
XUUDB Manual

XUUDB MANUAL

UNICORE Team

Document Version: 2.0.0
Component Version: 2.0.0
Date: 26 03 2013

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant
Agreement Nr. INFSO-RI-261611.

XUUDB Manual

Contents

1 Overview 1

1.1 The classic mapping . 1

1.2 The dynamic mapping . 2

2 Installation 3

2.1 Installation from Quickstart package . 3

2.2 Installation from RPM package (RedHat distributions) 4

2.3 Installation from the DEB package (Debian distributions) 4

3 Upgrade from 1.x version 4

4 The XUUDB server 6

4.1 Normal mode vs. DN mode . 6

4.2 Security . 6

4.3 Administrative access . 6

4.4 Configuration . 7

4.5 Dynamic mappings configuration . 19

4.6 Starting the XUUDB server . 25

4.7 Stopping the server . 25

4.8 Logging . 26

5 The admin client 28

5.1 Configuring advanced HTTP client settings 28

5.2 Commands . 30

5.3 Adding entries using add or (in DN mode) adddn 31

5.4 Checking the content . 32

5.5 Removing entries . 32

5.6 Exporting/importing . 32

5.7 Updating entries . 33

XUUDB Manual 1

The XUUDB server is Attribute Source implementation which can be used by UNICORE
servers. It is used to map user credentials (an X509 certificate or X500 distinguished name)
to authorisation and incarnation attributes. Since version 2, XUUDB is capable to perform also
dynamic mappings of incarnation attributes, using a rule engine.

For more information about UNICORE visit http://www.unicore.eu.

1 Overview

The UNICORE XUUDB is is used to map Grid user identity (an X.509 certificate or X.500
distinguished name (DN)) to a set of attributes. The attributes are typically used to provide
local account details (uid, gid(s)) and sometimes also to provide authorization information:
user’s role.

The UNICORE XUUDB is best suited as a site-service. Theoretically it can be used for multiple
sites, however as it offers limited authorization capabilities and doesn’t allow for grouping users,
it is better to use the more flexible UVOS server in such case. In case of the simple one host-
service XUUDB sometimes can be replaced by the simple file storing the mappings.

The XUUDB offers two web services, one for querying, and one for administration of the users’
database. There are several clients which can use the XUUDB server:

• Admin client (see Section 5) can be used to control the XUUDB database contents.

• UNICORE 6 servers include the XUUDB client code (it is named XUUDB Attribute Infor-
mation Point) and can consume and process the XUUDB information.

• UNICORE Rich client plugin allows for editing the XUUDB contents remotely, however it is
not enabled by default and it is not always up to date so some features might be missing.

Both admin and client access to the XUUDB can be protected by a client-authenticated SSL.

Since the version 2, XUUDB can map users using two different mechanisms:

• classic or static mechanism, where administrator enters mappings for each DN (or certificate)
manually,

• dynamic mechanism, where administrator only define rules stating what attributes should be
assigned to Grid users fulfilling rule’s condition.

1.1 The classic mapping

The classic or static mechanism was the only one available in XUUDB 1.x. It is useful when
number of users is small and easy to maintain or when UNICORE is used as a gateway to
HPC site, with a well defined set of users. It is also useful in Grid scenarios when a dedicated,
external infrastructure is build to maintain a global list of users.

http://www.unicore.eu

XUUDB Manual 2

Using it it is possible to set a list of Unix logins (aka XLogins or uids), a list of UNIX groups
(aka projects or gids) and the role attribute used for authorization. The first uid and the first gid
is assumed to be the default one but Grid users are allowed to choose any of the available.

In case of the default authorization policy the user role is required to get a normal access to the
site, the admin role grants super-user privileges, and the banned role bans the user.

The XUUDB stores either X.509 certificates (normal mode) or distinguished names (dn mode),
see Section 4.1.

Multiple Grid sites can share the XUUDB, even if the attributes are different per Grid site. Grid
sites are grouped by the so-called GCID (grid component ID).

1.2 The dynamic mapping

The dynamic mechanism was introduced in XUUDB 2. It is used to map users who were already
authorized, therefore it doesn’t make sense (and is not possible) to assign the authorization
attributes as role. The dynamic mechanism is useful in case of typical Grid deployments, when
a site doesn’t know a precise list of its users (which are maintained by the supported Virtual
Organizations), or simply doesn’t want to define manually a local account for each grid user. In
other words, site rely on a trusted 3rd party (a Virtual Organization) to maintain a list of genuine
and authorized users, and automatically assigns a local account to each user.

As it will be shown later on dynamic mappings can be also used in other scenarios, also being
complementary to static mappings.

Dynamic mappings configuration is described in the section Section 4.5.

XUUDB Manual 3

IMPORTANT NOTE ON PATHS
XUUDB is distributed either as an platform independent and portable bundle (as a part of
UNICORE quickstart package) or as an installable, platform dependent package such as
RPM.
Depending on the installation package used paths are different. If installing using distribution-
specific package the following path prefixes are used:

CONF=/etc/unicore/xuudb
BIN=/usr/sbin
ADMIN=/usr/sbin/unicore-xuudb-admin
LOG=/var/log/unicore/xuudb

If installing using portable bundle all XUUDB’s files are installed under a single directory. Path
prefixes used then are as follows, where INST is a directory where XUUDB was installed:

CONF=INST/conf
BIN=INST/bin
ADMIN=BIN/admin.sh
LOG=INST/log

The above variables (CONF, BIN, ADMIN and LOG) are used throughout the rest of this
manual.

2 Installation

UNICORE XUUDB is distributed in the following formats:

1. As a part of platform independent installation bundle called UNICORE Quickstart. UNI-
CORE Quickstart is provided in two forms: one with graphical installer and one with a
command line installer.

2. As a binary, platform-specific packages available currently for Scientific Linux 5, Scien-
tific Linux 6 and Debian 6 platforms. Those packages are tested on the enumerated plat-
forms, but should work without any problems with other versions of similar distributions
(e.g. version for SL6 works well on Centos 6 or recent Fedora distributions. Differences
between SL5 and SL6 version are only in the RPM tools used to create packages (so SL5
version should be more universal, while SL6 version can require a newer rpm software).

In both cases installation of XUUDB installs both XUUDB Server and XUUDB admin client.

After installing the server you will have to configure it. This is described in the section Section 4.

2.1 Installation from Quickstart package

Download the quickstart bundle from the UNICORE project website.

XUUDB Manual 4

If you use graphical installer follow the on screen instructions and do not forget to check click
the XUUDB checkbox when prompted.

If you use text installer then for generic installation instruction review the README file avail-
able after extracting the Quickstart bundle. You don’t have to change any defaults as XUUDB
installation is enabled by default.

In both cases you can preconfigure the XUUDB server during installation (of course this can be
done also later) by choosing the XUUDB server host, port and mode.

2.2 Installation from RPM package (RedHat distributions)

The preferred way is to use Yum to install (and subsequently update) XUUDB.

To perform the Yum installation, EMI Yum repository must be installed first. Refer to the
EMI release documentation (available at the EMI website http://www.eu-emi.eu/releases) for
detailed instructions. Typically installation of the EMI repository requires to download a single
RPM file and install it.

After the EMI repository is configured, the following command installs XUUDB:

$> yum install unicore-xuudb

2.3 Installation from the DEB package (Debian distributions)

The preferred installation way is to use apt to install and subsequently update XUUDB.

To perform the apt installation, EMI apt repository must be installed first. Refer to the EMI re-
lease documentation (available at the EMI website http://www.eu-emi.eu/releases) for detailed
instructions. Typically installation of the EMI repository requires to download a single DEB
file and install it.

After the EMI repository is configured, the following command installs XUUDB:

$> apt-get install unicore-xuudb

3 Upgrade from 1.x version

XUUDB 2 introduces a lot of new features and therefore the update form the version 1.x requires
special attention. In particular:

• Configuration files format have changed for both xuudb_server.conf and xuudb_cl
ient.conf

• New configuration file is required to configure dynamic mappings: dap-configurat
ion.xml.

http://www.eu-emi.eu/releases
http://www.eu-emi.eu/releases

XUUDB Manual 5

• Database schema in case of H2 was extended but also MySQL can be used (and other databases
in future).

The general update procedure is presented below, with possible variations:

1. Dump database contents of the 1.x XUUDB using admin client export command.

2. Stop the 1.x XUUDB server.

3. Update the server. This step mostly applies for RPM/DEB managed installations. For
Quickstart installation it is advised to install XUUDB along with other needed compo-
nents to a separate directory.

4. Port configuration of 1.x server to the new syntax. It can be done in two ways:

• Manually by applying all old values to the new template configuration. There are only
few properties to be ported so this is not a big task. The advantage of manual porting
is that the new template files with new options and updated comments are used. Note:
for RPM installations the new files will be named *.rpmnew.

• Automatically, using UNICORE configurator. You have to install the unicore-con
figurator package. It is included in Quickstart, for distributions install, simply run
appropriate command: yum install unicore-configurator or apt-get
install unicore-configurator. Using the configurator you can update the
old files automatically. Carefully read the output of the program - there can be some
problems reported. Option -h provides help, with information about the usage: how to
perform dry run, how to recover files from backup etc.

– For RPM/DEB installations it is enough to run unicore-config-update.py
xuudb. NOTE that the automatic update tool will only update the default configura-
tion files which are found in /etc/unicore/xuudb. In the case of xuudb-admin-
client, the configuration file being actually used is stored in $HOME/.xuudb/
xuudb_client.conf. Therefore this file has to be updated manually. If the
file in the home directory is supposed to be the same as the default, system-wide
configuration, then it can be simply replaced.

– For Quickstart put your old configuration files in the folder with the newly installed
XUUDB and specify its directory with -c option: ./unicore-config-upd
ate.py -c XUUDB_CONFIG_DIR xuudb.

5. If needed you can update your DB configuration to use MySQL.

6. Start the newly installed XUUDB.

7. Verify log file and fix any problems reported.

8. Use admin client to import the database dump created in the step 1.

XUUDB Manual 6

4 The XUUDB server

4.1 Normal mode vs. DN mode

The XUUDB Database supports two mode, normal and dn, controlled by a setting in the server
configuration file. Those modes are only relevant for the static mappings stored in XUUDB; the
dynamic mappings are done using DNs or other attributes always.

Running in normal mode uses the whole X.509 PEM encoded certificate of the user to perform
a match. This particularly means, if a user certificate is not valid any more the user has to be
readded with a new certificate. When running in dn mode, only the DN of the x509 certificate
is stored in the database, so a user can access UNICORE with a new certificate, if the DN is
equal to the old one. Therefore the dn mode is usually better. Also note that in some (although
rare) cases the UNICORE server performing authorisation may know only the user’s DN. Then
the certificate check won’t be possible and the user will be banned.

4.2 Security

XUUDB server may be run using a plain HTTP port. Then there is no access control at all,
so this mode is useful only in environments where XUUDB port is fully protected otherwise
against unauthorised access.

Typically client-authenticated SSL is used to protect the XUUDB. For this you will need cer-
tificates for the XUUDB server and all Grid components that want to talk to the XUUDB.
In general the UNICORE servers (like UNICORE/X) and the XUUDB-admin client need to
connect to the XUUDB-server. To make the SSL connections possible, you have to put the
following certificates as trusted certs into the XUUDB’s server truststore:

• CA certificate(s) of the UNICORE/X server(s) that query the XUUDB

• CA certificate(s) of the XUUDB-admin user certificate(s)

and XUUDB’s CA certificate in the truststores of its clients.

4.3 Administrative access

The XUUDB provides two kinds of web service interfaces, one for querying the XUUDB (i.e.
mapping Grid users to local users), and a second one for administration of the XUUDB (i.e.
adding and editing entries). All access to the XUUDB (including the administration utility!) is
through these web services. To prevent arbitrary Grid users from modifying the XUUDB, the
administrative interface has to be protected.

Starting with UNICORE 6.3, the access control mechanism of the administrative interface has
been simplified. An ACL file is used, which is a text file containing the distinguished names of

XUUDB Manual 7

the administrators. At least it has to contain the DN of the certificate used by the administration
utility.

As the static XUUDB data is rather sensitive (at least if privacy of the users is a concern) and
dynamic mappings often require some local modifications (e.g. assigning an account from a
pool) it is often desirable to protect also the query operations. XUUDB server since version 2,
offers such option (see Section 4.4.1).

The ACL file can be changed at runtime to easily add or remove administrators.

To change the location of the ACL file, edit the server configuration and set a configuration
parameter (see Section 4.4.1).

The ACL entries are expected in the RFC 2253 format. To get the name of a certificate in the
correct format using openssl, you can use the following OpenSSL command:

$> openssl x509 -in demouser.pem -noout -subject -nameopt ←↩
RFC2253

4.4 Configuration

By default, the configuration is defined in the file CONF/xuudb_server.conf. To use a
different configuration file, edit the start script, or use --start <config_file> as com-
mand line arguments when starting.

The server’s configuration file allows for setting the general XUUDB settings, database backend
settings, advanced HTTP server settings and finally (for secure HTTPS URLs) the server’s
truststore and credential. The available properties are described in the following sections.

For production deployments you should review the listen address and setup correctly truststore
and credential. Defaults for the embedded database configuration and HTTP server settings are
usually fine. In case if you plan to use dynamic mappings, also the dynamic mapping rules need
to be provided.

4.4.1 Base server settings

Property name Type Default
value /
mandatory

Description

xuudb.aclFile filesystem path - File with DNs of clients
authorised to access
protected XUUDB services.

xuudb.address string http://
localh
ost:
34463

HTTPS or HTTP URL
where the server should
listen.

XUUDB Manual 8

Property name Type Default
value /
mandatory

Description

xuudb.db.[.*] string can have
subkeys

- Properties with this prefix
are used to configure
database backend, used by
XUUDB. See separate
documentation for details.

xuudb.dynamicAtt
ributesConfig

filesystem path conf/
dynamicA
ttribute
sCfg.xml

File with configuration of
the dynamic part of the
XUUDB.

xuudb.protectAll [true, false] false If true then access to both
query and modify
operations are protected by
ACL. If false then only
modification operations are
protected.

xuudb.type [normal, dn] normal Controls whether full
certificates or DNs only are
stored in the static
XUUDB.

4.4.2 Database settings

XUUDB can be configured to use different database backends. Currently an embedded H2
database and external MySQL are supported. H2 database (the default) requires no additional
configuration actions. In any case XUUDB will automatically create the required database
tables.

For MySQL you have to properly set up the server and create a database. After installing
and starting the MySQL server login to its using MySQL client as administrator and using a
commands similar to the below ones, create a database and assign full access to a xuudb user.

create database xuudb;
grant all on xuudb.* to ’xuudbuser’@’127.0.0.1’ identified ←↩

by ’pass’;

Of course you are free to choose different names for the user, password and database. If XU-
UDB server is installed on other host then the proper address must be set instead of localhost.

Use the following properties to configure database connection from the XUUDB server. In case
of external database pay attention to enter proper values.

XUUDB Manual 9

Property name Type Default
value /
mandatory

Description

--- Database ---
xuudb.db.dialect [h2, mysql] h2 Database SQL dialect.

Must match the selected
driver, however sometimes
more then one driver can be
available for a dialect.

xuudb.db.driver Class extending
java.sql.Driver

org.h2.
Driver

Database driver class name.
This property is optional -
if not set, then a default
driver for the chosen
database type is used.

xuudb.db.jdbcUrl string jdbc:h2:
data/
xuudb2

Database JDBC URL.

xuudb.db.
password

string empty
string

Database password.

xuudb.db.
username

string sa Database username.

4.4.3 Configuring advanced HTTP server settings

UNICORE servers are using an embedded Jetty HTTP server. In most cases the default config-
uration should be perfectly fine. However, for some sites (e.g. experiencing an extremely high
load) HTTP server settings can be fine-tuned with the following parameters.

Property name Type Default
value /
mandatory

Description

xuudb.
httpServer.disab
ledCipherSuites

string empty
string

Space separated list of SSL
cipher suites to be disabled.

xuudb.
httpServer.
fastRandom

[true, false] false Use insecure, but fast
pseudo random generator to
generate session ids instead
of secure generator for SSL
sockets.

xuudb.
httpServer.gzip.
enable

[true, false] false Controls whether to enable
compression of HTTP
responses.

xuudb.
httpServer.gzip.
minGzipSize

integer number 100000 Specifies the minimal size
of message that should be
compressed.

XUUDB Manual 10

Property name Type Default
value /
mandatory

Description

xuudb.
httpServer.highL
oadConnections

integer >= 1 200 If the number of
connections exceeds this
amount, then the connector
is put into a special low on
resources state. Existing
connections will be closed
faster. Note that this value
is honored only for NIO
connectors. Legacy
connectors go into low
resources mode when no
more threads are available.

xuudb.
httpServer.
lowResourceMaxId
leTime

integer >= 1 100 In low resource conditions,
time (in ms.) before an idle
connection will time out.

xuudb.
httpServer.
maxIdleTime

integer >= 1 200000 Time (in ms.) before an idle
connection will time out. It
should be large enough not
to expire connections with
slow clients, values below
30s are getting quite risky.

xuudb.
httpServer.
maxThreads

integer >= 1 255 Maximum number of
threads to have in the thread
pool for processing HTTP
connections.

xuudb.
httpServer.
minThreads

integer >= 1 1 Minimum number of
threads to have in the thread
pool for processing HTTP
connections.

xuudb.
httpServer.requi
reClientAuthn

[true, false] true Controls whether the SSL
socket requires client-side
authentication.

xuudb.
httpServer.
soLingerTime

integer number -1 Socket linger time.

xuudb.
httpServer.
useNIO

[true, false] false Controls whether the NIO
connector be used. NIO is
best suited under high-load,
when lots of connections
exist that are idle for long
periods.

XUUDB Manual 11

Property name Type Default
value /
mandatory

Description

xuudb.
httpServer.
wantClientAuthn

[true, false] true Controls whether the SSL
socket accepts (but does not
require) client-side
authentication.

Example

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

In this example we will turn on compression of all responses bigger then 50kB (assuming that
the client supports decompression). Additionally we are limiting the number of concurrent
clients that can be served to more or less 50, while keeping 10 threads ready all the time to
server new clients quicker.

jetty.gzip.enable=true
jetty.gzip.minGzipSize=51200
jetty.maxThreads=50
jetty.minThreads=10

4.4.4 Configuring PKI trust settings

Public Key Infrastructure (PKI) trust settings are used to validate certificates. This is performed,
in the first place when a connection with a remote peer is initiated over the network, using the
SSL (or TLS) protocol. Additionally certificate validation can happen in few other situations,
e.g. when checking digital signatures of various sensitive pieces of data.

Certificates validation is primarily configured using a set of initially trusted certificates of so
called Certificate Authorities (CAs). Those trusted certificates are also known as trust anchors
and their collection is called a trust store.

Except of trust anchors validation mechanism can use additional input for checking if a certifi-
cate being checked was not revoked and if its subject is in a permitted namespace.

UNICORE allows for different types of trust stores. All of them are configured using a set of
properties.

• Keystore trust store - the only format supported in older UNICORE versions. Trusted cer-
tificates are stored in a single binary file in JKS or PKCS12 format. The file can be only

XUUDB Manual 12

manipulated using a special tool like JDK keytool or openssl (in case of PKCS12 format).
This format is great if trust store should be in a single file or when compatibility with other
Java solutions or older UNICORE releases is desired.

• OpenSSL trust store - allows to use a directory with CA certificates stored in PEM format,
under precisely defined names: the CA certificates, CRLs, signing policy files and names-
paces files are named <hash>.0, <hash>.r0, <hash>.signing_policy and <hash>.namespaces.
Hash is the old hash of the trusted CA certificate subject name (in Openssl version > 1.0.0
use -suject_hash_old switch to generate it). If multiple certificates have the same hash then
the default zero number must be increased. This format is the same as used by other then
UNICORE popular middlewares as Globus and gLite. It is suggested when a common trust
store with such middlewares is needed.

• Directory trust store - the most flexible and convenient option, suggested for all remaining
cases. It allows to use a list of wildcard expressions, concrete paths of files or even URLs to
remote files as a set of trusted CAs and in the same way for the CRLs. With this trust store
administrator can simply configure all files (or all with a specified extension) in a directory to
be used as a trusted certificates.

In all cases trust stores can be (and by default are) configured to be automatically refreshed.

Property name Type Default
value /
mandatory

Description

xuudb.
truststore.
allowProxy

[ALLOW,
DENY]

ALLOW Controls whether proxy
certificates are supported.

xuudb.
truststore.type

[keystore,
openssl,
directory]

mandatory
to be set

The truststore type.

xuudb.
truststore.
updateInterval

integer number 600 How often the truststore
should be reloaded, in
seconds. Set to negative
value to disable refreshing
at runtime. (runtime
updateable)

--- Directory type settings ---
xuudb.
truststore.
directoryConnect
ionTimeout

integer number 15 Connection timeout for
fetching the remote CA
certificates in seconds.

XUUDB Manual 13

Property name Type Default
value /
mandatory

Description

xuudb.
truststore.
directoryDiskCac
hePath

filesystem path - Directory where CA
certificates should be
cached, after downloading
them from a remote source.
Can be left undefined if no
disk cache should be used.
Note that directory should
be secured, i.e. normal
users should not be allowed
to write to it.

xuudb.
truststore.direc
toryEncoding

[PEM, DER] PEM For directory truststore
controls whether
certificates are encoded in
PEM or DER.

xuudb.
truststore.direc
toryLocations.*

list of
properties with
a common
prefix

- List of CA certificates
locations. Can contain
URLs, local files and
wildcard expressions.
(runtime updateable)

--- Keystore type settings ---
xuudb.
truststore.
keystoreFormat

string - The keystore type (jks,
pkcs12) in case of truststore
of keystore type.

xuudb.
truststore.
keystorePassword

string - The password of the
keystore type truststore.

xuudb.
truststore.
keystorePath

string - The keystore path in case of
truststore of keystore type.

--- Openssl type settings ---

XUUDB Manual 14

Property name Type Default
value /
mandatory

Description

xuudb.
truststore.
opensslNsMode

[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EUGRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EUGRIDPM
A_GLOBUS

In case of openssl
truststore, controls which
(and in which order)
namespace checking rules
should be applied. The
REQUIRE settings will
cause that all configured
namespace definitions files
must be present for each
trusted CA certificate
(otherwise checking will
fail). The AND settings will
cause to check both existing
namespace files. Otherwise
the first found is checked
(in the order defined by the
property).

xuudb.
truststore.
opensslPath

filesystem path /etc/
grid-sec
urity/
certific
ates

Directory to be used for
opeenssl truststore.

--- Revocation settings ---
xuudb.
truststore.crlCo
nnectionTimeout

integer number 15 Connection timeout for
fetching the remote CRLs
in seconds (not used for
Openssl truststores).

xuudb.
truststore.
crlDiskCachePath

filesystem path - Directory where CRLs
should be cached, after
downloading them from
remote source. Can be left
undefined if no disk cache
should be used. Note that
directory should be
secured, i.e. normal users
should not be allowed to
write to it. Not used for
Openssl truststores.

XUUDB Manual 15

Property name Type Default
value /
mandatory

Description

xuudb.
truststore.
crlLocations.*

list of
properties with
a common
prefix

- List of CRLs locations. Can
contain URLs, local files
and wildcard expressions.
Not used for Openssl
truststores. (runtime
updateable)

xuudb.
truststore.
crlMode

[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling
mode. The IF_VALID
setting turns on CRL
checking only in case the
CRL is present.

xuudb.
truststore.crlUp
dateInterval

integer number 600 How often CRLs should be
updated, in seconds. Set to
negative value to disable
refreshing at runtime.
(runtime updateable)

xuudb.
truststore.
ocspCacheTtl

integer number 3600 For how long the OCSP
responses should be locally
cached in seconds (this is a
maximum value, responses
won’t be cached after
expiration)

xuudb.
truststore.
ocspDiskCache

filesystem path - If this property is defined
then OCSP responses will
be cached on disk in the
defined folder.

xuudb.
truststore.ocspL
ocalResponders.
<NUMBER>

list of
properties with
a common
prefix

- Optional list of local OCSP
responders

xuudb.
truststore.
ocspMode

[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAIL
ABLE

General OCSP ckecking
mode. REQUIRE should
not be used unless it is
guaranteed that for all
certificates an OCSP
responder is defined.

xuudb.
truststore.
ocspTimeout

integer number 10000 Timeout for OCSP
connections in miliseconds.

xuudb.
truststore.
revocationOrder

[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation
sources order

XUUDB Manual 16

Property name Type Default
value /
mandatory

Description

xuudb.
truststore.
revocationUseAll

[true, false] false Controls whether all
defined revocation sources
should be always checked,
even if the first one already
confirmed that a checked
certificate is not revoked.

Examples

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Directory trust store, with a minimal set of options:

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.crlLocations=/trust/dir/*.crl

Directory trust store, with a complete set of options:

truststore.type=directory
truststore.allowProxy=DENY
truststore.updateInterval=1234
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.directoryLocations.2=http://caserver/ca.pem
truststore.directoryEncoding=PEM
truststore.directoryConnectionTimeout=100
truststore.directoryDiskCachePath=/tmp
truststore.crlLocations.1=/trust/dir/*.crl
truststore.crlLocations.2=http://caserver/crl.pem
truststore.crlUpdateInterval=400
truststore.crlMode=REQUIRE
truststore.crlConnectionTimeout=200
truststore.crlDiskCachePath=/tmp

Openssl trust store:

truststore.type=openssl
truststore.opensslPath=/truststores/openssl
truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE

XUUDB Manual 17

truststore.allowProxy=ALLOW
truststore.updateInterval=1234
truststore.crlMode=IF_VALID

Java keystore used as a trust store:

truststore.type=keystore
truststore.keystorePath=src/test/resources/certs/truststore. ←↩

jks
truststore.keystoreFormat=JKS
truststore.keystorePassword=xxxxxx

4.4.5 Configuring the credential

UNICORE uses private key and a corresponding certificate (called together as a credential) to
identify users and servers. Credentials might be provided in several formats:

• Credential can be obtained from a keystore file, encoded in JKS or PKCS12 format.

• Credential can be loaded as a pair of PEM files (one with private key and another with certifi-
cate),

• or from a pair of DER files,

• or even from a single file, with PEM-encoded certificates and private key (in any order).

The following table list all parameters which allows for configuring the credential. Note that
nearly all options are optional. If not defined, the format is tried to be guessed. However some
credential formats require additional settings. For instance if using der format the keyPath is
mandatory as you need two DER files: one with certificate and one with the key (and the latter
can not be guessed).

Property name Type Default
value /
mandatory

Description

xuudb.
credential.path

filesystem path mandatory
to be set

Credential location. In case
of jks, pkcs12 and pem store
it is the only location
required. In case when
credential is provided in
two files, it is the certificate
file path.

XUUDB Manual 18

Property name Type Default
value /
mandatory

Description

xuudb.
credential.
format

[jks, pkcs12,
der, pem]

- Format of the credential. It
is guessed when not given.
Note that pem might be
either a PEM keystore with
certificates and keys (in
PEM format) or a pair of
PEM files (one with
certificate and second with
private key).

xuudb.
credential.
password

string - Password required to load
the credential.

xuudb.
credential.
keyPath

string - Location of the private key
if stored separately from
the main credential
(applicable for pem and der
types only),

xuudb.
credential.
keyPassword

string - Private key password,
which might be needed
only for jks or pkcs12, if
key is encrypted with
different password then the
main credential password.

xuudb.
credential.
keyAlias

string - Keystore alias of the key
entry to be used. Can be
ignored if the keystore
contains only one key entry.
Only applicable for jks and
pkcs12.

Examples

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Credential as a pair of DER files:

credential.format=der
credential.password=the\!njs

XUUDB Manual 19

credential.path=/etc/credentials/cert-1.der
credential.keyPath=/etc/credentials/pk-1.der

Credential as a JKS file (credential type can be autodetected in almost every case):

credential.path=/etc/credentials/server1.jks
credential.password=xxxxxx

4.5 Dynamic mappings configuration

Dynamic mappings are configured with a set of rules. When designing rules it is good to
remember that all users, which will be evaluated, were already successfully authorized.

Each rule has a condition which selects users and a list of mappings which should be applied
for the selected users. Example conditions (in English):

• all members of a /vo.wonderworld.gov

• all (authorized) users

• all users having extra attribute matlabAllowed with any value AND being member of a sub-
group of /vo.wonderworld.gov/dynamic/

Example mappings (in English):

• add user a supplementary group matlab

• assign uid from a pool of existing uids

• assign a fixed gid grid

• invoke an external program and use its standard output as users gid

Precisely speaking, a mapping must have defined:

• what attribute it maps: uid, (primary)gid or supplementaryGids,

• using what method: fixed, pool or script

Additionally one can define an optional parameter stating if the mapping should overwrite an
attribute value which was previously set (either by an earlier rule or assigned using a different
attribute source).

As it was mentioned there are three kinds of mappings. Let’s shortly introduce them one by
one.

XUUDB Manual 20

4.5.1 Fixed mappings

Fixed mappings are the most basic option. The mapping is formed by a simple assignment of a
fixed value. It can be used to:

• assign a common (shared!) uid to selected users (rarely used)

• assign a fixed gid to selected users (very useful to assign a gid to all Grid users, or all members
of a VO)

• assign some supplementary gids to selected users (useful to provide additional local permis-
sions to users having a special role/attributes/etc.).

The example in the pool mappings section contains also a fixed mapping.

4.5.2 Script mappings

Script mappings are the "Do It Yourself" mechanism. You can provide a command line which
will be parsed and invoked. The application must return (on its standard output) a string with
a mapping result (depending on what is mapped - gid, uid or a space separated list of supple-
mentary gids). Of course the script can be informed who is actually being mapped, by using
parameters enclosed in ${}. The list of available parameters is given below.

• userDN user’s DN

• issuerDN user’s certificate issuer’s DN

• role user’s role

• vo user’s selected VO

• extraAttributes map with extra attributes, names are the keys

• xlogin user’s uid (if already established)

• gid user’s gid (if already established)

• supplementaryGids user’s supplementary gids (if already established)

• xloginSet whether uid was set

• gidSet whether gid was set

• dryRun whether the current invocation is only a simulation, and shouldn’t affect any per-
sisted system settings.

The example below contains also a script mapping.

XUUDB Manual 21

4.5.3 Pool mappings

Finally the pool mappings are both flexible and relatively easy to use --- it is the most advanced
mapping type. Using the pool mapping you have to prepare a set of reserved identifiers (uids
or gids depending on what is mapped). The related system accounts can be precreated or can
be created on-demand. The pool mapping is configured with an additional, very important
parameter: pool key. Pool key is a name of one of the user’s attributes: userDN, issuerDN (DN
of CA which issued user’s certificate), role, vo or any other generic user’s attribute.

To explain how the pool works let’s assume that key is set to userDN. Then the pool will map a
user as follows: first it is checked if there is an existing mapping bound to the user’s DN. If it is
found then it is simply returned. If not (the user is trying to use the site for the first time) a new
identifier is selected from the pool, and stored under the key being the user’s DN. Then the new
identifier is returned.

Therefore all users having the same value of the pool key will get the same mapping and vice
versa. If DN is the key then all users will have a distinct mapping (useful for uids or for gids, if
every user should get a unique one). If for instance a VO is the key then all VO members will
have the same mapping (useful for gid, or for uid if all VO members should have the same user
account).

The following example should help to understand those concepts and is also providing a basic
syntax reference:

<?xml version="1.0" encoding="UTF-8"?>
<dynamicAttributes xmlns="http://unicore.eu/xuudb/ ←↩

dynamicAttributesRules"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<rules>
<!-- all members of the vo /vo.wonderworld.gov should have a ←↩

common uid ’shared_user’-->
<rule>
<condition>vo.matches("/vo.wonderworld.gov/.*")</condition>
<mapping type="fixed" maps="uid">shared_user</mapping>

</rule>

<!-- all users with a role ’admin’ should get a primary gid ←↩
from the ’admins-pool’ pool.

For pools the ’maps’ parameter is optional - it is better to ←↩
specify it in the pool definition,

below. -->
<rule>
<condition>role="admin"</condition>
<mapping type="pool">admins-pool</mapping>

</rule>

<!-- all users from the /biology VO get an uid from the pool ←↩
and a fixed primary gid ’biol’ -->

<rule>

XUUDB Manual 22

<condition>vo.matches("/biology/.*")</condition>
<mapping type="pool">biology-uids-pool</mapping>
<mapping type="fixed" maps="gid">biol</mapping>

</rule>

<!-- complicated condition: all users who have a generic ←↩
attribute ’matlabAllowed’ set AND the value
of this attribute is ’true’ get a supplementary group ’ ←↩

matlab’ -->
<rule>
<condition>attributes["matlabAllowed"] != null and attributes ←↩

["matlabAllowed"].contains("true")</condition>
<mapping type="fixed" maps="supplementaryGids">matlab</ ←↩

mapping>
</rule>

<!-- all (authorized) users, who do not have an uid set (←↩
overwriteExisting=false)
should have an uid assigned by a script /usr/local/bin/ ←↩

create-mapping.pl. The script will be called
with two arguments: user’s DN and VO.

<rule>
<condition>true</condition>
<mapping type="script" maps="uid" overwriteExisting="false">/ ←↩

usr/local/bin/create-mapping.pl "${userDN}" "${vo}" </ ←↩
mapping>

</rule>
</rules>

<!-- Here come pools -->
<pools>

<!-- pool ’admins-pool’ maps gids. The list of gids provides ←↩
groups which were

pre-created in the system. The gids will be stored per-user dn, ←↩
so every admin will get another group.

Finally the list of gids uses special expressions where number ←↩
ranges are provided.

-->
<pool id="admins-pool" type="gid" key="dn" precreated="true">
<id>admin_grp[1-100]</id>
<id>admin_grp[200-1000]</id>

</pool>
<!-- This pool identifiers are loaded from an external file -->
<pool id="biology-uids-pool" type="uid" key="dn" precreated=" ←↩

true">
<file>src/test/resources/externalUidsPool</file>

</pool>
</pools>

</dynamicAttributes>

XUUDB Manual 23

Usage of pools brings several issues regarding old mappings removal and notifications about
pools getting empty. In the first case it suggested not to remove the users for the time a VO
or Grid is supported: it is a simplest approach, and nowadays operating systems can support
thousands of uids without any problem (Linux can have 32bit uid numbers).

In case a site wants to recycle mappings, XUUDB offers the following mechanism:

• Inactive mappings can be automatically (after a configurable time threshold) or manually
(using the admin client) frozen. An identifier belonging to a frozen mapping is still assumed
to be occupied, but the mapped user won’t have it assigned (in the unprobable case that
she returns to the site). Freezing is introduced to give a time for tidying up local resources
assigned to the identifier. Such cleaning must be done manually and should include removal
of all owned files and killing any processes. Of course this depends whether the identifier was
a gid or uid. Also please note that in case of clusters, all nodes should be cleaned up.

• After the clean up is done, the frozen mapping can be removed, again manually using the
admin client or automatically, after staying in the frozen state for a specified amount of time.
Note that it is impossible to remove an alive mapping.

If administrator is able to provide scripts which performs cleanup, then it is possible to invoke
them upon pool mapping freezing and automate the whole process. In a similar way other
handlers may be configured and XUUDB will invoke them to notify about mappings removal,
assignment of a new mapping (useful when accounts are not pre-created but should be created
on demand) and also when a pool is getting empty.

The following example shows all the possible handlers and lists arguments which are passed
to them. As it can be seen all pool options including handlers, can be configured globally or
per-pool.

<?xml version="1.0" encoding="UTF-8"?>
<dynamicAttributes xmlns="http://unicore.eu/xuudb/ ←↩

dynamicAttributesRules"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!-- how often (in s) pools should be checked for old or inactive ←↩
mappings -->

<poolMonitoringDelay>300</poolMonitoringDelay>
<defaultConfiguration>

<!-- in seconds: automatic freezeing (time measured from ←↩
last mapping use)... -->

<automaticFreezeAfter>3600000</automaticFreezeAfter>
<!-- ... and final removal (time measurd from mapping ←↩

freeze) -->
<automaticDeleteAfter>36000</automaticDeleteAfter>
<!-- when less then this free mappings are left generate a ←↩

warning -->
<emptyWarningAbsolute>20</emptyWarningAbsolute>
<!-- when less then this percent of free mappings is left ←↩

generate a warning -->
<emptyWarningPercent>5</emptyWarningPercent>

XUUDB Manual 24

<!-- timeout for running ALL external programms -->
<handlerInvocationTimeLimit>10000</ ←↩

handlerInvocationTimeLimit>

<!-- Various handlers. Arguments are pool.getId(), pool. ←↩
getType().toString(),

bean.getEntry(), oldSec+"" ←↩
-->

<!-- Handler invoked before freezing an account.
Arguments: <poolId> <poolType> <identifier> < ←↩

inactiveForInSeconds>
If handler returns a non-zero exit status then the freezing is ←↩

skipped
(unless invoked by admin-client).

-->
<handlerAboutToFreeze>/opt/handlers/releaseAccountResources ←↩

.sh</handlerAboutToFreeze>

<!-- Handler invoked before deleting a frozen identifier.
Arguments: <poolId> <poolType> <identifier> < ←↩

frozenForInSeconds>
If handler returns a non-zero exit status then the ←↩

deletion is skipped
(unless invoked by admin-client).
-->

<handlerAboutToDelete>/opt/handlers/notifyAccountRecycled. ←↩
sh</handlerAboutToDelete>

<!-- Handler invoked when an identified from the uids pool ←↩
is going to be used for the first time

(or for the first time after deleting it), if the pool is ←↩
set as not pre-created.

Arguments: <poolId> <uid> <key>
-->
<handlerCreateSystemUid>/opt/handlers/adduser.sh</ ←↩

handlerCreateSystemUid>

<!-- Handler invoked when an identified from the gids pool ←↩
is going to be used for the first time

(or for the first time after deleting it), if the pool is ←↩
set as not pre-created.

Arguments: <poolId> <gid> <key>
-->
<handlerCreateSystemGid>/opt/handlers/addgroup.sh</ ←↩

handlerCreateSystemGid>

<!-- Handler invoked when a pool warning threshold is ←↩
exceeded.

XUUDB Manual 25

Arguments: <poolId> <poolType> <remainingFreeIds>
-->
<handlerPoolGettingEmpty>/opt/handlers/notifyNearlyEmpty.sh ←↩

</handlerPoolGettingEmpty>

<!-- Handler invoked when a pool gets empty.
Arguments: <poolId> <poolType>

-->
<handlerPoolEmpty>/opt/handlers/notifyEmpty.sh</ ←↩

handlerPoolEmpty>
</defaultConfiguration>

<rules>
<!-- some rules -->

</rules>

<pools>
<!-- Pool can overwrite any of the global configuration ←↩

options -->
<pool id="admins-pool" type="gid" key="dn" precreated="true">
<configuration>

<!-- disable automatic freezing for this pool -->
<automaticFreezeAfter>-1</automaticFreezeAfter>

</configuration>
<id>admin_grp[1-100]</id>
<id>admin_grp[200-1000]</id>

</pool>
</pools>

</dynamicAttributes>

4.6 Starting the XUUDB server

Start the server with

BIN/start.sh

In case if XUUDB was installed with binary package use:

/etc/init.d/unicore-xuudb start

4.7 Stopping the server

Stop the server with

BIN/stop.sh

XUUDB Manual 26

This sends a TERM signal to the XUUDB process. Please do not use kill -9 to stop XU-
UDB, to avoid corrupting the database.

In case if XUUDB was installed with binary package use:

/etc/init.d/unicore-xuudb stop

4.8 Logging

UNICORE uses the Log4j logging framework. It is configured using a config file. By default,
this file is found in components configuration directory and is named logging.propert
ies. The config file is specified with a Java property log4j.configuration (which is set
in startup script).

Several libraries used by UNICORE also use the Java utils logging facility (the output is two-
lines per log entry). For convenience its configuration is also controlled in the same logging.
properties file and is directed to the same destination as the main Log4j output.

Note
You can change the logging configuration at runtime by editing the logging.properties file. The
new configuration will take effect a few seconds after the file has been modified.

By default, log files are written to the the LOGS directory.

The following example config file configures logging so that log files are rotated daily.

Set root logger level to INFO and its only appender to A1.
log4j.rootLogger=INFO, A1

A1 is set to be a rolling file appender with default params
log4j.appender.A1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.A1.File=logs/uas.log

#configure daily rollover: once per day the uas.log will be copied
#to a file named e.g. uas.log.2008-12-24
log4j.appender.A1.DatePattern=’.’yyyy-MM-dd

A1 uses the PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c{1} %x - ←↩

%m%n

Note
In Log4j, the log rotation frequency is controlled by the DatePattern. Check
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
for the details.

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html

XUUDB Manual 27

For more info on controlling the logging we refer to the log4j documentation:

• PatternLayout

• RollingFileAppender

• DailyRollingFileAppender

Log4j supports a very wide range of logging options, such as date based or size based file
rollover, logging different things to different files and much more. For full information on
Log4j we refer to the publicly available documentation, for example the Log4j manual.

4.8.1 Logger categories, names and levels

Logger names are hierarchical. In UNICORE, prefixes are used (e.g. "unicore.security") to
which the Java class name is appended. For example, the XUUDB connector in UNICORE/X
logs to the "unicore.security.XUUDBAuthoriser" logger.

Therefore the logging output produced can be controlled in a fine-grained manner. Log levels
in Log4j are (in increasing level of severity):

TRACE on this level huge pieces of unprocessed information are dumped, # DEBUG on this
level UNICORE logs (hopefully) admin-friendly, verbose information, useful for hunting prob-
lems, # INFO standard information, not much output, # WARN warnings are logged when some-
thing went wrong (so it should be investigated), but recovery was possible, # ERROR something
went wrong and operation probably failed, # FATAL something went really wrong - this is used
very rarely for critical situations like server failure.

For example, to debug a security problem in the UNICORE security layer, you can set:

log4j.logger.unicore.security=DEBUG

If you are just interested in details of credentials handling, but not everything related to security
you can use the following:

log4j.logger.unicore.security=INFO
log4j.logger.unicore.security.CredentialProperties=DEBUG

so the XUUDBAuthoriser will log on DEBUG level, while the other security components log
on INFO level.

Note
(so the full category is printed) and turn on the general DEBUG logging for a while (on uni-
core). Then interesting events can be seen and subsequently the logging configuration can
be fine tuned to only show them.

Several logging categories common in XUUDB:

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/manual.html

XUUDB Manual 28

Log category Description
unicore All of UNICORE
unicore.security Security layer
unicore.client Client calls (to other servers)
unicore.xuudb XUUDB related
unicore.xuudb.server XUUDB server
unicore.xuudb.server.db XUUDB server database layer
unicore.xuudb.client XUUDB admin client

5 The admin client

The admin client is used to edit the XUUDB, using a web service interface. It is configured in
the file CONF/xuudb_client.conf. Client is invoked using the following pattern:

ADMIN <command> <options>

You can get detailed usage info by calling the admin script without any options. As it was noted
above the actual utility path is dependent on how XUUDB was installed: it is either /usr/
sbin/unicore-xuudb-admin or INST/bin/admin.sh.

Note
to switch on the confirmation message asked by the add command, edit the admin.sh script,
so that the xuudb.batch property is set to false.

The client configuration requires the URL of the XUUDB server in the property xuudb.add
ress and in case of secure HTTPS connections also a configuration truststore and credential.
The settings are exactly the same as in case of the XUUDB server, so refer to its documentation:
Section 4.4.4.

5.1 Configuring advanced HTTP client settings

UNICORE client stack can be configured with several advanced options. In most cases you can
skip this section as defaults are fine.

The following table lists all available options. A special note for the http.* properties: those are
passed to the Apache Commons HTTP Client library. Therefore it is possible to configure all
relevant options of the client. The options are listed under this address: http://hc.apache.org/-
httpclient-3.x/preference-api.html Also see the example below.

http://hc.apache.org/httpclient-3.x/preference-api.html
http://hc.apache.org/httpclient-3.x/preference-api.html

XUUDB Manual 29

Property name Type Default
value /
mandatory

Description

xuudb.client.
digitalSigningEn
abled

[true, false] true Controls whether signing of
key web service requests
should be performed.

xuudb.client.
http.[.*]

string can have
subkeys

- Additional settings to be
used by the HTTP client.
The most useful are
.socket.timeout and
.connection.timeout. If
those are not set, default is
used: 20000

xuudb.client.
httpAuthnEnabled

[true, false] false Whether HTTP basic
authentication should be
used.

xuudb.client.
httpPassword

string empty
string

Password for use with
HTTP basic authentication
(if enabled).

xuudb.client.
httpUser

string empty
string

Username for use with
HTTP basic authentication
(if enabled).

xuudb.client.
inHandlers

string empty
string

Space separated list of
additional handler class
names for handling
incoming WS messages

xuudb.client.
outHandlers

string empty
string

Space separated list of
additional handler class
names for handling
outgoing WS messages

xuudb.client.
serverHostnameCh
ecking

[NONE,
WARN, FAIL]

WARN Controls whether server’s
hostname should be
checked for matching its
certificate subject. This
verification prevents
man-in-the-middle attacks.
If enabled WARN will only
print warning in log, FAIL
will close the connection.

xuudb.client.
sslAuthnEnabled

[true, false] true Controls whether SSL
authentication of the client
should be performed.

xuudb.client.
sslEnabled

[true, false] true Controls whether the
SSL/TLS connection mode
is enabled.

XUUDB Manual 30

Example

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Here we are setting an extremely short connection and socket timeouts for the clients calls,
using the Apache HTTP client parameters. Additionally server hostname to certificate subject
name checking is set to cause connections failures, preventing man in the middle attacks.

client.http.connection.timeout=2000
client.http.socket.timeout=2000
client.serverHostnameChecking=FAIL

5.2 Commands

The help with examples is provided for each command. You can use helpAll to print a
reference documentation for all commands. Selected commands are also described below.

[classic]
add
adddn
check-cert (chc)
check-dn (chdn)
export
import
list
remove
update

[dynamic]
findMapping (fm)
findReverseMapping (fr)
freezeMappings
getDynamicAttributes (getDyn)
listMappings (lm)
listPools (lp)
removeMappings
removePool (rmp)
simulate (sim)

[other]
help
helpAll

XUUDB Manual 31

Note
when the server runs in dn mode you can use dn= parameter for remove, list and update

Common options:

gcID
The so-called "grid component ID" is used to group entries, and must match the setting in
the UNICORE/X configuration file uas.config. For example if you have two systems
with different user name mappings, you can handle both with a single XUUDB, since you
can store two user name mappings for each certificate, by choosing a different gcID for
both systems. When updating xuudb entries, the special gcid * can be used as wildcard
for updating user entries on all systems.

pemfile
A file containing the public key in PEM format

DN
The distinguished name of a user

xlogin
xlogins (from UNIX login) are used for incarnation. Grid user’s request which results in
invocation of operations on a target system (usually through BSS) must be mapped to a
local UNIX user. This attribute specifies the XLogins which are valid for the user. The
first one is also used as a default one, if user does not request a particular one. Multiple
logins can be specified using a :

project
Defines a primary group UNIX group for a user. If it is undefined then a default group
for the XLogin is used.

role
The usual roles in UNICORE are user for a normal user, and admin for an adminis-
trator. Custom roles can be added, and can be assigned permissions in the UNICORE/X
security policy file.

5.3 Adding entries using add or (in DN mode) adddn

Example using a pem file:

$> ADMIN add DEMO-SITE /path/to/usercert.pem userlogin user

Example using the DN (works only if server runs in DN mode):

$> ADMIN adddn DEMO-SITE "CN=John Doe, O=Test Inc" userlogin ←↩
user

XUUDB Manual 32

Note
When extracting the DN from a certificate file using OpenSSL, make sure to use the RFC2
253 option, for example:

openssl x509 -in demouser.pem -noout -subject -nameopt ←↩
RFC2253

5.4 Checking the content

Apart from list, you can use the check-cert and check-dn commands to see what the
XUUDB contains for a certain certificate or DN.

5.5 Removing entries

HINT: before removing you can check with the list command which takes the same parameters,
that your are removing the correct entries.

To remove all entries from xuudb (you will have to confirm this)

$> ADMIN remove ALL

To remove some entries, you have to specify attributes.

To remove a user with cert cert.pem at gcid MYSITE:

$> ADMIN remove gcid=id001 pemfile=/path/cert.pem

To remove all users from gcid OLDMACHINE:

$> ADMIN remove gcid=OLDMACHINE

To remove a user with xlogin jdoe from all gcids:

$> ADMIN remove xlogin=jdoe

etc. . .

5.6 Exporting/importing

The export command creates a csv file, which will contain the complete XUUDB database:

$> ADMIN export uudb.csv

If the file already exists, the export tool will complain. To override this, please specify the
overwrite option, e.g.

XUUDB Manual 33

$> ADMIN export uudb.csv overwrite

The import command takes the a csv file (as generated by export) and imports all entries.
Already existing entries will not be changed. To do updates, execute admin.sh remove
ALL before, or specify clearDB as a second argument

$> ADMIN import uudb.csv

5.7 Updating entries

The update command can be used to modify existing entries, for example to replace the
certificate or the login. For example,

$> ADMIN update DEMO-SITE certs/demouser.pem xlogin=jb007

would update the entry identified by the gcID DEMO-SITE and the given pem file, and assign a
new xlogin. If you want to update a user’s entry on all the sites, you would use

$> ADMIN update * certs/demouser.pem xlogin=jb007

Note that the wildcard * is a special character for the shell and needs to be escaped with a
backslash.

	Overview
	The classic mapping
	The dynamic mapping

	Installation
	Installation from Quickstart package
	Installation from RPM package (RedHat distributions)
	Installation from the DEB package (Debian distributions)

	Upgrade from 1.x version
	The XUUDB server
	Normal mode vs. DN mode
	Security
	Administrative access
	Configuration
	Dynamic mappings configuration
	Starting the XUUDB server
	Stopping the server
	Logging

	The admin client
	Configuring advanced HTTP client settings
	Commands
	Adding entries using add or (in DN mode) adddn
	Checking the content
	Removing entries
	Exporting/importing
	Updating entries

