
UNICORE Workflow System manual

UNICORE WORKFLOW SYSTEM MANUAL

UNICORE Team

Document Version: 1.0.0
Component Version: 6.4.1
Date: 06 12 2012

UNICORE Workflow System manual

Contents

1 Installing and setting up the UNICORE 6 workflow servers 1

1.1 Prerequisites . 1

1.2 Updating from previous versions . 1

1.3 Installation . 2

1.4 Setup . 2

1.5 Workflow data storage . 3

1.6 Verifying the installation . 3

2 Configuration options 4

2.1 Workflow server . 5

2.2 Servorch server . 7

3 The "simple workflow" workflow description language 8

3.1 Introduction . 8

3.2 Overview and simple constructs . 8

3.3 Using workflow variables . 12

3.4 Loop constructs . 13

3.5 While and repeat-until loops . 13

3.6 For-each loop . 14

3.7 Examples . 17

4 Updating an existing UNICORE 6 workflow installation 22

4.1 Prerequisites . 23

4.2 General updates . 23

UNICORE Workflow System manual 1

The UNICORE Workflow System provides advanced workflow processing capabilities using
UNICORE Grid resources. Its main components are the Workflow Engine and the Service Or-
chestrator. While the Workflow Engine provides high-level control constructs (for-each, while,
if-then-else, etc), the Service Orchestrator contains a powerful, extensible resource broker, and
deals with execution of single UNICORE jobs.

For more information about UNICORE visit http://www.unicore.eu.

1 Installing and setting up the UNICORE 6 workflow servers

This chapter covers basic installation of the workflow system and integration of workflow ser-
vices into an existing UNICORE Grid.

As a general note, the workflow services are organized into two UNICORE/X instances termed
"workflow server" and "servorch server". General UNICORE configuration concepts (such as
gateway integration, shared registry, attribute sources) fully apply, and you should refer to the
UNICORE/X manual for details.

1.1 Prerequisites

• Java 6 (JRE or SDK) or later

• An existing UNICORE 6 installation with Gateway, XUUDB, Shared Registry and one ore
more UNICORE/X target systems.

• For storing workflow input and output data you need one of

– a "global storage" service (see below)

– a StorageFactory service

1.2 Updating from previous versions

This release is not backwards compatible to the 6.3.x releases. It is simplest to do a clean
installation, since many config files were changed:

• The bin/*.sh scripts have been changed to NOT contain any configuration parameters. All
basic configuration (like memory, PID file etc) is done in conf/startup.properties

• The uas.config and wsrflite.xml files were modified

• Security policies are done using xacml2.config and xacml2Policies/*.xml

The required update steps are covered in detail in Section 4 .

http://www.unicore.eu

UNICORE Workflow System manual 2

Note
On Windows, please stop and uninstall the services before updating! Uninstalling works by
executing

workflow\bin\uninstall.bat
servorch\bin\uninstall.bat

We recommend a fresh installation to avoid trouble. . . In any case you need to replace the
jar files and the wrapper.conf files for workflow and servorch by the new versions.

1.3 Installation

Either use the graphical installer, or untar the tar.gz, edit configure.properties and run config-
ure.py

• Graphical installer: during installation, you will be asked for the parameters of your UNI-
CORE installation.

• Using the tar.gz bundle: please review the configure.properties file and edit the parameters
to integrate the workflow services into your existing UNICORE 6 environment. Then call
./configure.py to apply your settings to the configuration files. Finally use ./inst-
all.py to install the workflow server files to the selected installation directory.

The basic installation procedure is completely analogous to the installation of the UNICORE
core servers.

1.4 Setup

After installation, there are some manual steps needed to integrate the new servers into your
UNICORE installation.

• Gateway: edit gateway/conf/connections.properties and add the connection
data for the workflow server(s). For example,

WORKFLOW = https://localhost:7700
SERVORCH = https://localhost:7701

• XUUDB: if you chose to use an XUUDB for workflow and service orchestrator, you might
have to add entries to the XUUDB to allow users access to the workflow engine. Optionally,
you can edit the GCID used by the workflow/servorch servers, so that existing entries in the
XUUDB will match.

• Registry: if you use access control on the registry (which is recommended!) you need to
allow the workflow and servorch services to register themselves in the Registry. The exact
procedure depends on how you configured your Registry, please cross-reference the section
"Enabling access control" in the Registry manual.

UNICORE Workflow System manual 3

1.5 Workflow data storage

For storing workflow data (i.e. input/output files needed by the workflow tasks) a storage service
instance has to be available. Currently there are two options, using a storage factory or using
a shared storage instance. In fact, if multiple options are available at runtime, users using the
UNICORE Rich Client (URC) can choose one when they submit their workflows.

1.5.1 Storage Factory

This is the "best" way to store workflow data. Each workflow will store its data on its own
storage service instance, making management of these data simpler. The 6.3.0 versions of the
clients (UCC and URC) allow to choose the storage factory that should be used.

1.5.2 Single shared storage

The workflow system can use a single shared normal UNICORE 6 storage service instance for
storing files shared between workflow tasks.

Note
while this is simple to set up, it can create a bottleneck in your system, because there is no
automated cleanup of workflow data.

The storage to be used can be configured on any UNICORE 6 container running StorageMan-
agement and FileTransfer services. For example, one of the target systems can be used for this
purpose. The installation procedure is as follows

• In the uas.config file of the UNICORE 6 server, add the following string to the uas.onstartup
property: de.fzj.unicore.uas.util.CreateSMSOnStartup

• The directory on the target system used for storing data is configured by a property in uas.config
defaultsms.workdir=<data directory on the target system> This directory must have the same
permission settings as the normal UNICORE filespace, i.e. all users must be allowed to create
directories in there.

Restart the UNICORE/X container in question. The default_storage service must appear in the
registry after the restart.

1.6 Verifying the installation

If you use the UNICORE Rich Client, you should see the workflow service in the Grid Browser
view, and you should be able to submit workflows to it.

Using the UNICORE commandline client, you can check whether the new servers are available
and accessible:

UNICORE Workflow System manual 4

ucc system-info -l

should include output such as

Checking for Workflow submission service ...
... OK, found 1 service(s)

+ https://localhost:8080/WORKFLOW/services/WorkflowFactory?res= ←↩
default_workflow_submission

Checking for Service orchestrator ...
... OK, found 1 service(s)

+ https://localhost:8080/SERVORCH/services/ServiceOrchestrator

To check whether the services are accessible, you can use

ucc wsrf getproperties https://localhost:8080/WORKFLOW/services/ ←↩
WorkflowFactory?res=default_workflow_submission

and get output such as

<rp:GetResourcePropertyDocumentResponse>
etc. etc.

1.6.1 Running a test job

Using UCC again, you can submit workflows

ucc workflow-submit /path/to/ucc/samples/date.swf

and get the ID of your new workflow back

https://localhost:8080/WORKFLOW/services/WorkflowManagement?res ←↩
=7959937b-897a-49f1-aa7d-f485491872d5

2 Configuration options

This chapter covers configuration options for the workflow services that differ from the usual
UNICORE/X configuration options.

NOTE

The configuration files in the distribution are commented, and contain example settings for all
the options listed here.

UNICORE Workflow System manual 5

2.1 Workflow server

Additional workflow server configuration is performed in the files uas.config, wsrflit-
e.xml and xnjs.xml.

2.1.1 Workflow processing

All these settings are made in uas.config.

XNJS settings

The number of threads used by the workflow engine for processing can be controlled in the
xnjs.xml file. Note, this does not control the number of parallel activities etc, since all XNJS
processing is asynchronous. The default number (4) is usually sufficient.

What is more important is the data directory where the XNJS will store its state. This should be
on a fast (local) filesystem for maximum performance. Shared (NFS) directories should not be
used.

These two properties are set using

<eng:Properties>
<eng:Property name="XNJS.statedir" value="data/NJSSTATE"/>
<eng:Property name="XNJS.numberofworkers" value="4"/>

</eng:Properties>

Limits

To avoid too many tasks submitted (possibly erroneously) from a workflow, various limits can
be set.

• unicore.workflow.maxActivitiesPerGroup limits the total number of tasks sub-
mitted for a single group (i.e. (sub-)workflow). By default, this limit is 1000, ie. a maximum
number of 1000 jobs can be created by a single group. Note, that it is not possible to limit
the total number of jobs for any workflow, it can only be applied to individual parts of the
workflow (such as loops).

• unicore.workflow.forEach.maxConcurrentActivities limits the maximum
number of tasks in a for-each group that can be active at the same time (default: 20).

Resubmission

The workflow engine will (in some cases) resubmit failed tasks to the service orchestrator. To
completely switch off the resubmission,

UNICORE Workflow System manual 6

unicore.workflow.resubmit.disable=true

To change the maximum number of resubmissions from the default "3",

unicore.workflow.resubmit.limit=3

Disabling tracing

To disable sending messages to the tracer component, set

c9m.tracing=false

Cleanup behaviour

This controls the behaviour when a workflow is removed (automatically or by the user). By
default, the workflow engine will remove all child jobs, but will keep the storage where the files
are. This can be controlled using two properties

• unicore.workflow.cleanup.storage remove storage when workflow is destroyed
(default: false)

• unicore.workflow.cleanup.jobs remove jobs when workflow is destroyed (de-
fault: true)

2.1.2 Location mapper

The location mapper provides a crucial service: it is used to obtain "abstract names" for files,
i.e. clients and server components can define names that refer to actual files stored on some
storage without having to deal with the actual file locations.

The location mapper uses its own database for storing these mappings, which can be either H2
or MySQL. The database configuration is done in wsrflite.xml using a set of property
values named org.chemomentum.dataManagement.locationManager.*

2.1.3 Tracing

The (optional) tracing service stores timestamps for activities associated with any given work-
flow, for example submission time, workflow to service orchestrator submission, job submis-
sions, etc. It is used on the clients to show time profile data to the user. The URC contains a
nice user interface for interacting with this trace data.

This data is stored in a H2 database, which stores its data on the filesystem. Currently no other
database is supported.

The only configuration option is the data directory, which is "data" by default:

c9m.tracer.dbdir=data

UNICORE Workflow System manual 7

2.2 Servorch server

Additional servorch server configuration is performed in the uas.config file. Advanced
re-configuration such as adding new brokering strategies can be done in the set of Spring con-
figuration files servorch/conf/spring.

NOTE

The directory containing the Spring config files is controlled by the property c9m.servorc-
h.config.spring in uas.config.

2.2.1 Data directories

By default, runtime data is placed into the "data" subdirectory in the service orchestrator direc-
tory. To change, there are several properties.

• The usual UNICORE data directory is set in wsrflite.xml in the persistence.di-
rectory property (default: "data/wsrf")

• The service orchestrator’s runtime data is configured in the c9m.servorch.dbdir prop-
erty (default: "data/servorch")

• The local indexes created by the resource broker are placed into the directory configured
in conf/spring/attributeCache.xml, by default this is set to "data/brokering/at-
tributes".

2.2.2 Preferred file transfer protocol

If you want to change the preferred protocol, you may set

c9m.filetransfer.protocol=BFT

The default "BFT" will work with any UNICORE installation. If all UNICORE/X servers are
recent (i.e. 6.4.2 or later) you can try using "u6" as preferred protocol. In that case, the servers
will try to use the "best" protocol that is available.

2.2.3 Job processing

A number of properties control how jobs are processed by the service orchestrator.

• c9m.servorch.job.supervisors controls the number of threads that act as "job su-
pervisors". These threads are used for resource brokering, job submission, status polling and
storing job outcomes. The default is "10".

• c9m.servorch.job.update.interval controls the number of milliseconds between
two job status polls. The default is "5000".

UNICORE Workflow System manual 8

• c9m.servorch.job.update.interval controls the number of milliseconds between
two job status polls. The default is "5000".

• c9m.servorch.job.first.update.interval is the delay in milliseconds between
job submission and first status check. The default is "5000".

• c9m.servorch.outcomes.update.interval is the number of milliseconds between
status polls while transferring files. The default is "5000".

2.2.4 Resource checking and attribute gathering interval

The service orchestrator periodically updates its internal information about available sites and
their resources. The update interval is controlled in the file conf/spring/servorch.xml
and is given in seconds. The default is "20".

<bean id="org.chemomentum.servorch.broker.IResourceBroker"
class="org.chemomentum.servorch.broker.ResourceBrokerImpl"
autowire="constructor">

<property name="siteUpdateInterval">
<value>20</value>

</property>
</bean>

3 The "simple workflow" workflow description language

3.1 Introduction

This chapter provides an overview of the "simple workflow" XML dialect that is used to describe
workflows. It will allow you to write workflows "by hand", i.e. without using the graphical
UNICORE Rich client. These can be submitted for example using the UNICORE commandline
client (UCC).

The workflow language is an XML dialect, the corresponding XML schema can be found in the
UNICORE SourceForge code repository

After presenting all the constructs individually, several complete Section 3.7 are given.

3.2 Overview and simple constructs

The overall workflow document has the following form:

<Workflow xmlns="http://www.chemomentum.org/workflow/simple"
Id="...">

<Documentation>?
<DeclareVariable>*

UNICORE Workflow System manual 9

<Activity>*
<Transition>*
<SubWorkflow>*
<Option>*

</Workflow>

Here and in the following we use a simple notation to denote XML elements and their multi-
plicity, where "*" denotes zero or multiple occurences and "?" denotes zero or one occurence of
a given element. In the next sections the elements of the workflow description will be discussed
in detail.

NOTE

The Id attribute is used in many workflow elements, and must be an identifier string that is
UNIQUE within the workflow.

3.2.1 Documentation

The Documentation element allows to add some meta-information to the workflow description,
i.e. it will be ignored by the processing engine. In detail

<Documentation xmlns="http://www.chemomentum.org/workflow/simple">
<Name>?
<Creator>?
<CreationDate>?
<Comment>*

</Documentation>

3.2.2 Activities

Activity elements have the following form

<Activity xmlns="http://www.chemomentum.org/workflow/simple"
Id="..." Type="..." >

<Option Name="...">*
<JSDL>?

</Activity>

The Id attribute must be unique within the workflow. There are different types of activity,
which are distinguished by the "Type" attribute.

• "START" denotes an explicit start activity. If no such activity is present, the processing engine
will detect the proper starting activities

• "JSDL" denotes a executable (job) activity. In this case, the JSDL sub element holds the
JSDL job definition

UNICORE Workflow System manual 10

• "ModifyVariable" allows to modify a workflow variable. An option named "variableName"
identifies the variable to be modified, and an option "expression" holds the modification ex-
pression in the Groovy programming language syntax. See also the variables section later

• "Split": this activity can have multiple outgoing transitions. All transitions with matching
conditions will be followed. This is comparable to an "if() . . . if() . . . if()" construct in a
programming language.

• "Branch": this activity can have multiple outgoing transitions. The transition with the first
matching condition will be followed. This is comparable to an "if() . . . elseif() . . . else()"
construct in a programming language

• "Merge" merges multiple flows without synchronising them

• "Synchronize" merges multiple flows and synchronises them

• "HOLD" stops further processing of the current flow until the client explicitely sends continue
message.

3.2.3 Subworkflows

The workflow description allows nested sub workflows, which have the same formal structure
as the main workflow

<SubWorkflow xmlns="http://www.chemomentum.org/workflow/simple"
Id="..."

<DeclareVariable>*
<Activity>*
<Transition>*
<SubWorkflow>*
<Option>*

</SubWorkflow>

3.2.4 JSDL activities

JSDL activities are the basic executable pieces of a workflow. The embedded JSDL job def-
inition will be packed in a so-called work assignment and sent to a service orchestrator for
processing.

<s:Workflow xmlns:s="http://www.chemomentum.org/workflow/simple"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">

<s:Documentation>
<s:Comment>Simple ’Date’</s:Comment>

</s:Documentation>

<s:Activity Id="date1" Type="JSDL">
<s:JSDL>

UNICORE Workflow System manual 11

<jsdl:JobDescription>
<jsdl:Application>
<jsdl:ApplicationName>Date</jsdl:ApplicationName>

</jsdl:Application>
</jsdl:JobDescription>

</s:JSDL>
</s:Activity>

</s:Workflow>

The processing of the JSDL activity can be influenced using Option sub-elements. Currently
the following options can be used

• IGNORE_FAILURE if set to "true", the workflow engine will ignore any failure of the task
and continue processing as if the activity had been completed successfully. NOTE: this has
nothing to do with the exit code of the actual UNICORE job! Failure means for example data
staging failed, or the service orchestrator did not find a matching target system for the job.

• MAX_RESUBMITS set to an integer value to control the number of times the activity will be
retried. By default, the workflow engine will re-try three times (except in those cases where
it makes no sense to retry).

3.2.5 Transitions and conditions

The basic flow of control in a workflow is handled using Transition elements. These ref-
erence to "From+ and To activities (or subflows) and may have conditions attached. If no
condition is present, the transition is followed unconditionally.

The syntax is as follows.

<Transition xmlns="http://www.chemomentum.org/workflow/simple"
From="..." To="..." Id="...">
<Condition>?

</Transition>

The From and To attributes denote Activity or SubWorkflow Id’s, and the Id attribute has to
be workflow-unique.

The optional Condition element has the following syntax

<Condition xmlns="http://www.chemomentum.org/workflow/simple">
<Expression>...</Expression>

</Condition>

where Expression is string-valued. The workflow engine offers some pre-defined functions
that can be used in these expressions. For example you can use the exit code of a job, or check
for the existence of a file within these expressions.

UNICORE Workflow System manual 12

• eval(expr) Evaluates the expression "expr" in Groovy syntax, which must evaluate to a
boolean. The expression may contain workflow variables

• exitCodeEquals(activityID, value)Allows to compare the exit code of the Grid
job associated with the Activity identified by “activityID” to "value"

• exitCodeNotEquals(activityID, value) Allows to check the exit code of the
Grid job associated with the Activity identified by "activityID", and check that it is different
from "value"

• fileExists(activityID, path) Checks that the working directory of the Grid job
associated with the given Activity contains a file "path"

• fileLengthGreaterThanZero(activityID, path) Checks that the working di-
rectory of the Grid job associated with the given Activity contains a file "path", which has a
non-zero length

• before(time) and after(time) check whether the current time is before or after the
given time (in "yyyy-MM-dd HH:mm" format)

3.3 Using workflow variables

Workflow variables need to be declared using a DeclareVariable element before they can
be used.

<DeclareVariable xmlns="http://www.chemomentum.org/workflow/simple ←↩
">

<Name>
<Type>
<InitialValue>

</DeclareVariable>

Currently variables of type "STRING", "INTEGER" , "FLOAT" and "BOOLEAN" are sup-
ported.

Variables can be modified using an activity of type ModifyVariable.

For example, to increment the value of the "COUNTER" variable, the following Activity is used

<Activity xmlns="http://www.chemomentum.org/workflow/simple"
Type="ModifyVariable" Id="incrementCounter">

<Option name="variableName">COUNTER</s:Option>
<Option name="expression">COUNTER += 1;</s:Option>

<Activity>

The option named "expression" contains an expression in Groovy syntax (which is very close
to Java).

The workflow engine will replace variables in JSDL data staging sections and environment
definitions, allowing to inject variables into jobs. Examples for this mechanism will be given in
the examples section.

UNICORE Workflow System manual 13

3.4 Loop constructs

Apart from graphs constructed using Activity and Transition elements, the workflow
system supports special looping constructs, for-each, while and repeat-until, which to setup
allow complex workflows very easily.

3.5 While and repeat-until loops

These allow to loop a certain part of the workflow while (or until) a condition is met. A while
loop looks like this

<s:SubWorkflow xmlns:s="http://www.chemomentum.org/workflow/simple"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
Id="while" xsi:type="s:WhileType" >

<s:DeclareVariable Id="decl">
<s:Name>C</s:Name>
<s:Type>INTEGER</s:Type>
<s:InitialValue>1</s:InitialValue>

</s:DeclareVariable>

<s:SubWorkflow Id="while_body">

<s:Activity Id="job" Type="JSDL">
<s:JSDL> ... </s:JSDL>

</s:Activity>

<!-- this modifies the variable used in the
’while’ loop’s exit condition -->

<s:Activity Id="mod" Type="ModifyVariable">
<s:Option name="variableName">C</s:Option>
<s:Option name="expression">C++;</s:Option>

</s:Activity>

<s:Transition From="job" To="mod" Id="job-mod"/>

</s:SubWorkflow>

<!-- exit condition -->
<s:Condition>
<s:Expression>eval(C<5)</s:Expression>
</s:Condition>

</s:SubWorkflow>

The necessary ingredients are that the loop body (Id="while_body" in the example) modifies
the loop variable ("C" in the example), and the exit condition eventually terminates the loop.

UNICORE Workflow System manual 14

Completely analogously, a repeat-until loop is constructed, the only syntactic difference is that
the SubWorkflow" now has a different +xsi:type attribute:

<s:SubWorkflow xmlns:s="http://www.chemomentum.org/workflow/simple"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
Id="while" xsi:type="s:RepeatUntilType" >

<s:DeclareVariable Id="decl">
<s:Name>C</s:Name>
<s:Type>INTEGER</s:Type>
<s:InitialValue>1</s:InitialValue>

</s:DeclareVariable>

<s:SubWorkflow Id="repeat_body">

<s:Activity Id="job" Type="JSDL">
<s:JSDL> ... </s:JSDL>

</s:Activity>

<!-- this modifies the variable used in the
repeat’ loop’s exit condition -->

<s:Activity Id="mod" Type="ModifyVariable">
<s:Option name="variableName">C</s:Option>
<s:Option name="expression">C++;</s:Option>

</s:Activity>

<s:Transition From="job" To="mod" Id="job-mod"/>

</s:SubWorkflow>

<!-- exit condition -->
<s:Condition>
<s:Expression>eval(C<5)</s:Expression>
</s:Condition>

</s:SubWorkflow>

Semantically, the repeat-loop will always execute the body at least once, since the condition
is checked after executing the body, while in the "while" case, the condition will be checked
before executing the body.

3.6 For-each loop

The for-each loop is a complex, yet powerful feature of the workflow system, since it allows
parallel execution of the loop body, and different ways of building the different iterations. Put
briefly, one can loop over variables (as in the "while" and "repeat-until" case), but one can also
loop over enumerated values and (most importantly) over file sets.

The basic syntax is

UNICORE Workflow System manual 15

<s:SubWorkflow xmlns:s="http://www.chemomentum.org/workflow/simple"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance ←↩

"
Id="..." xsi:type="s:ForEachType"
IteratorName="...">

<-- ... activities to be looped over
(loop body)

-->
<s:SubWorkflow Id="..">
</s:SubWorkflow>

<!-- define range to loop over -->

<s:ValueSet> ... </s:ValueSet>

OR

<s:VariableSet> ... <s:/VariableSet>

OR

<s:FileSet> ... <s:/FileSet>

<!-- optional chunking -->
<:Chunking> ... </s:Chunking>

</s:SubWorkflow>

The IteratorName attribute allows to control how the "loop iterator variable" is to be called.

3.6.1 The ValueSet element

Using ValueSet, iteration over a fixed set of strings can be defined. The main use for this
is parameter sweeps, i.e. executing the same job multiple times with different arguments or
environment variables.

<s:ValueSet xmlns:s="http://www.chemomentum.org/workflow/simple">

<s:Value>10</s:Value>
<s:Value>20</s:Value>
<s:Value>30</s:Value>
<s:Value>40</s:Value>

</s:ValueSet>

In each iteration, the workflow variables "CURRENT_ITERATOR_VALUE" and "CURRENT_ITERATOR_INDEX"
will be set to the current value and index.

UNICORE Workflow System manual 16

3.6.2 The VariableSet element

The VariableSet allows to define the iteration range using a variable, similar to a for-loop
in a programming language.

<s:VariableSet xmlns:s="http://www.chemomentum.org/workflow/ ←↩
simple">
<s:VariableName>C</s:VariableName>
<s:Type>INTEGER</s:Type>
<s:StartValue>0</s:StartValue>
<s:Expression>C++</s:Expression>
<s:EndCondition>C<5</s:EndCondition>

</s:VariableSet>

The sub-elements should be self-explanatory.

In each iteration, the workflow variables "CURRENT_ITERATOR_VALUE" and "CURRENT_ITERATOR_INDEX"
will be set to the current value and index.

3.6.3 The FileSet element

This is a very useful variation of the for-each loop which allows to loop over a set of files,
optionally chunking together several files in a single iteration.

The basic structure of a FileSet definition is this

<s:FileSet xmlns:s="http://www.chemomentum.org/workflow/simple"
recurse="true|false">

<s:Base> ... <s:/Base>
<s:Include>?
<s:Exclude>?

</s:FileSet>

The Base element defines a base of the filenames, which will be resolved at runtime, and com-
plemented according to the Includes and/or Excludes elements. The recurse attribute
allows to control whether the resolution should be done recursively into any subdirectories.

For example to recursively collect all PDF files (but not the file named "ununsed.pdf") in a
certain directory on a storage:

<s:FileSet xmlns:s="http://www.chemomentum.org/workflow/simple"
recurse="true">

<s:Base>BFT:https://mysite/services/StorageManagement?res ←↩
=123#/files/pdf/</s:Base>

<s:Include>*.pdf</s:Include>
<s:Exclude>unused.pdf</s:Exclude>

</s:FileSet>

The following variables are set where ITERATOR_NAME is the loop iterator name defined in
the SubWorkflow as shown above.

UNICORE Workflow System manual 17

• ITERATOR_NAME is set to the current iteration index (1, 2, 3, . . .)

• ITERATOR_NAME_VALUE is set to the current full file path

• ITERATOR_NAME_FILENAME is set to the current file name (last element of the path)

3.6.4 Chunking

Chunking allows to group sets of files into a single iteration, for example for efficiency reasons.
The number of files in a chunk can be controlled, alternatively the size of the chunk in kbytes
can be set.

<s:Chunking xmlns:s="http://www.chemomentum.org/workflow/simple">
<s:Chunksize> ... </s:Chunksize>
<s:IsKbytes>true|false</s:IsKbytes>
<s:FilenameFormat> ... </s:FilenameFormat>

</s:Chunking>

The Chunksize element is either the number of files in a chunk, or (if IsKbytes is set to
"true") the size of a chunk in kbytes.

The optional FilenameFormat allows to control how the individual files (which are staged
into the job directory) should be named. By default, the index is prepended, i.e. "inputfile"
would be named "1_inputfile" to "N_inputfile" in each chunk. The pattern uses the variables
respectively. For example, if you have a set of PDF files, and you want them to be named
"file_1.pdf" to "file_N.pdf", you could use the pattern

<s:FilenameFormat>file_{0}.pdf</s:FilenameFormat>

or, if you prefer to keep the existing extensions, but append an index to the name,

<s:FilenameFormat>{1}{0}.{2}</s:FilenameFormat>

3.7 Examples

This section collects a few simple example workflows. They are intended to be submitted using
UCC.

3.7.1 Simple "diamond" graph

This example shows how to use transitions for building simple workflow graphs. It consists of
four "Date" jobs arranged in a diamond shape, i.e. "date2a" and "date2b" are executed roughly
in parallel. A "Split" activity is inserted to divide the control flow into two parallel branches.

All "stdout" files are staged out to the workflow storage.

UNICORE Workflow System manual 18

<s:Workflow xmlns:s="http://www.chemomentum.org/workflow/simple"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">

<s:Documentation>
<s:Comment>Simple diamond graph</s:Comment>

</s:Documentation>

<s:Activity Id="date1" Type="JSDL">
<s:JSDL>

<jsdl:JobDescription>
<jsdl:Application>
<jsdl:ApplicationName>Date</jsdl:ApplicationName>
<jsdl:ApplicationVersion>1.0</jsdl:ApplicationVersion>

</jsdl:Application>
<jsdl:DataStaging>
<jsdl:FileName>stdout</jsdl:FileName>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:Target>
<jsdl:URI>c9m:${WORKFLOW_ID}/date1.out</jsdl:URI>

</jsdl:Target>
</jsdl:DataStaging>

</jsdl:JobDescription>
</s:JSDL>

</s:Activity>

<Activity Id="split" Type="Split"/>

<s:Activity Id="date2a" Type="JSDL">
<s:JSDL>

<jsdl:JobDescription>
<jsdl:Application>
<jsdl:ApplicationName>Date</jsdl:ApplicationName>

</jsdl:Application>
<jsdl:DataStaging>
<jsdl:FileName>stdout</jsdl:FileName>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:Target>
<jsdl:URI>c9m:${WORKFLOW_ID}/date2a.out</jsdl:URI>

</jsdl:Target>
</jsdl:DataStaging>

</jsdl:JobDescription>
</s:JSDL>

</s:Activity>

<s:Activity Id="date2b" Type="JSDL">
<s:JSDL>

<jsdl:JobDescription>
<jsdl:Application>
<jsdl:ApplicationName>Date</jsdl:ApplicationName>

UNICORE Workflow System manual 19

</jsdl:Application>
<jsdl:DataStaging>
<jsdl:FileName>stdout</jsdl:FileName>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:Target>
<jsdl:URI>c9m:${WORKFLOW_ID}/date2b.out</jsdl:URI>

</jsdl:Target>
</jsdl:DataStaging>

</jsdl:JobDescription>
</s:JSDL>

</s:Activity>

<s:Activity Id="date3" Type="JSDL">
<s:JSDL>

<jsdl:JobDescription>
<jsdl:Application>
<jsdl:ApplicationName>Date</jsdl:ApplicationName>

</jsdl:Application>
<jsdl:DataStaging>
<jsdl:FileName>stdout</jsdl:FileName>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:Target>
<jsdl:URI>c9m:${WORKFLOW_ID}/date3.out</jsdl:URI>

</jsdl:Target>
</jsdl:DataStaging>

</jsdl:JobDescription>
</s:JSDL>

</s:Activity>

<s:Transition Id="date1-split" From="date1" To="split"/>
<s:Transition Id="split-date2a" From="split" To="date2a"/>
<s:Transition Id="split-date2b" From="split" To="date2b"/>
<s:Transition Id="date2b-date3" From="date2b" To="date3"/>
<s:Transition Id="date2a-date3" From="date2a" To="date3"/>

</s:Workflow>

3.7.2 While loop example using workflow variables

The next example shows some uses of workflow variables in a while loop. The loop variable
"C" is copied into the job’s environment. Another possible use is to use workflow variables in
data staging sections, for example to name files.

<s:Workflow xmlns:s="http://www.chemomentum.org/workflow/simple"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"
xmlns:jsdl1="http://schemas.ggf.org/jsdl/2005/11/jsdl- ←↩

posix"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

UNICORE Workflow System manual 20

<s:Activity Id="start" Type="START"/>

<s:SubWorkflow Id="while" xsi:type="s:WhileType" IteratorName="C">

<s:DeclareVariable Id="decl">
<s:Name>C</s:Name>
<s:Type>INTEGER</s:Type>
<s:InitialValue>0</s:InitialValue>

</s:DeclareVariable>

<s:SubWorkflow Id="while_body">

<s:Activity Id="job" Type="JSDL">
<s:JSDL>
<jsdl:JobDescription>
<jsdl:Application>

<jsdl1:POSIXApplication>
<jsdl1:Executable>/bin/echo</jsdl1:Executable>
<jsdl1:Argument>$TEST</jsdl1:Argument>
<jsdl1:Environment name="TEST">${C}</jsdl1:Environment ←↩

>
</jsdl1:POSIXApplication>

</jsdl:Application>

<jsdl:DataStaging>
<jsdl:FileName>stdout</jsdl:FileName>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:Target>

<jsdl:URI>c9m:${WORKFLOW_ID}/out_${C}</jsdl:URI>
</jsdl:Target>

</jsdl:DataStaging>

</jsdl:JobDescription>
</s:JSDL>

</s:Activity>

<!-- this modifies the variable used in the while loop’s exit ←↩
condition -->

<s:Activity Id="mod" Type="ModifyVariable">
<s:Option name="variableName">C</s:Option>
<s:Option name="expression">C++;</s:Option>

</s:Activity>

<s:Transition From="job" To="mod" Id="job-mod"/>

</s:SubWorkflow>

<!-- exit condition -->
<s:Condition>

UNICORE Workflow System manual 21

<s:Expression>eval(C<=5)</s:Expression>
</s:Condition>

</s:SubWorkflow>

<s:Transition From="start" To="while" Id="start-while"/>

</s:Workflow>

The output files (named using "global" identifiers) can be downloaded using UCC, for example
(replace WFID by the real workflow ID obtained after submission)

ucc get-file -s c9m:WFID/out_1 -t ./out_1

3.7.3 For-each loop example

The next example shows how to use the for-each loop to loop over a set of files. The jobs will
stage-in the current file. Also, the name of the current file is placed into the job environment.

<s:Workflow xmlns:s="http://www.chemomentum.org/workflow/simple"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"
xmlns:jsdl1="http://schemas.ggf.org/jsdl/2005/11/jsdl- ←↩

posix"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<s:Activity Id="start" Type="START"/>

<s:SubWorkflow Id="for" xsi:type="s:ForEachType" IteratorName="IT">

<s:SubWorkflow Id="for_body">

<s:Activity Id="job" Type="JSDL">
<s:JSDL>
<jsdl:JobDescription>
<jsdl:Application>

<jsdl1:POSIXApplication>
<jsdl1:Executable>/bin/echo</jsdl1:Executable>
<jsdl1:Argument>Processing file: $NAME</jsdl1:Argument ←↩

>
<!-- put current filename into environemt -->
<jsdl1:Environment name="NAME">${IT_FILENAME}</jsdl1: ←↩

Environment>
</jsdl1:POSIXApplication>

</jsdl:Application>

<!-- stage in the current file -->
<jsdl:DataStaging>
<jsdl:FileName>infile</jsdl:FileName>

UNICORE Workflow System manual 22

<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:Source>

<!-- use variable containing file path -->
<jsdl:URI>${IT_VALUE}</jsdl:URI>

</jsdl:Source>
</jsdl:DataStaging>

<jsdl:DataStaging>
<jsdl:FileName>stdout</jsdl:FileName>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:Target>

<!-- iterator variable contains iteration index -->
<jsdl:URI>c9m:${WORKFLOW_ID}/out_${IT}</jsdl:URI>

</jsdl:Target>
</jsdl:DataStaging>

</jsdl:JobDescription>
</s:JSDL>

</s:Activity>

</s:SubWorkflow>

<!-- file set defining which files to loop over -->
<s:FileSet recurse="false">
<s:Base>https://mygateway.de:7700/MYSITE/services/ ←↩

StorageManagement?res=default_storage#/</s:Base>
<s:Include>/myfiles/*</s:Include>

</s:FileSet>

</s:SubWorkflow>

<s:Transition From="start" To="for" Id="start-for"/>

</s:Workflow>

4 Updating an existing UNICORE 6 workflow installation

This release is backwards compatible with previous 6.4.x releases, and the update procedure
described here only convers this simple case.

In case you are still running 6.3.x, you should read the documentation distributed with the 6.4.0
release.

UNICORE Workflow System manual 23

4.1 Prerequisites

It is assumed you have unpacked the NEW version into a directory $NEW and the existing
installation is in $OLD. E.g. the existing workflow config directory would be $OLD/workf-
low/conf

You should also warn your users that an update is going to be performed, and shutdown the
servorch and workflow servers ideally when there is no active workflow in the system.

This description assumes a Unix system. If you’re on windows it is quite similar, but in addition
the wrapper.conf files have to be replaced with their new versions.

4.2 General updates

These steps have to be done for both workflow and servorch servers.

4.2.1 Backup

You should make a backup of your existing installation.

4.2.2 Update jar files (mandatory)

The Java libraries have to be replaced with the new versions.

cd $OLD
rm -rf servorch/lib/*
rm -rf workflow/lib/*
cp -R $NEW/workflow/lib/* workflow/lib/
cp -R $NEW/servorch/lib/* servorch/lib/

Then, restart both servers.

	Installing and setting up the UNICORE 6 workflow servers
	Prerequisites
	Updating from previous versions
	Installation
	Setup
	Workflow data storage
	Verifying the installation

	Configuration options
	Workflow server
	Servorch server

	The "simple workflow" workflow description language
	Introduction
	Overview and simple constructs
	Using workflow variables
	Loop constructs
	While and repeat-until loops
	For-each loop
	Examples

	Updating an existing UNICORE 6 workflow installation
	Prerequisites
	General updates

