
UNICORE/X Manual

UNICORE/X MANUAL

UNICORE Team

Document Version: 1.0.0
Component Version: 7.0.3
Date: 11 07 2014

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant
Agreement Nr. INFSO-RI-261611.

UNICORE/X Manual

Contents

1 Getting started 1

1.1 Prerequisites . 1

1.2 Installation . 1

2 Configuration of UNICORE/X 3

2.1 Overview of the main configuration options 3

2.2 Config file overview . 3

2.3 Settings for the UNICORE/X process (e.g. memory) 4

2.4 Config file formats . 4

2.5 UNICORE/X container configuration overview 5

2.6 Integration of UNICORE/X into a UNICORE infrastructure 9

2.7 Startup code . 10

2.8 Security . 11

2.9 Configuring the XNJS and TSI . 22

2.10 Configuring storages on TargetSystem instances 22

2.11 Configuring the StorageFactory service . 26

2.12 HTTP proxy, timeout and web server settings 28

3 Administration 33

3.1 Controlling UNICORE/X memory usage . 33

3.2 Logging . 33

3.3 Administration and monitoring . 36

3.4 Migration of a UNICORE/X server to another physical host 38

4 Security concepts in UNICORE/X 39

4.1 Security concepts . 39

5 Attribute sources 41

5.1 UNICORE incarnation and authorization attributes 41

5.2 Configuring Attribute Sources . 43

5.3 Available attribute sources . 44

UNICORE/X Manual

6 Virtual Organisations (VO) Support 48

6.1 Overview . 48

6.2 Configuration . 50

6.3 VO configuration HOWTOs . 56

7 The UNICORE persistence layer 61

7.1 Configuring the persistence layer . 62

7.2 Clustering . 66

8 Configuring the XNJS 67

8.1 The UNICORE TSI . 68

8.2 Support for the UNICORE RUS Accounting 72

9 The IDB 72

9.1 Defining the IDB file . 73

9.2 Using an IDB directory . 73

9.3 Applications . 73

9.4 TargetSystemProperties . 75

9.5 Script templates . 79

9.6 More on the IDB Application definitions . 81

9.7 Application metadata (simple) . 82

9.8 Execution Environments . 84

9.9 IDB definition of execution environments . 84

9.10 Custom resource definitions . 88

9.11 Tweaking the incarnation process . 90

9.12 Incarnation tweaking context . 98

10 The UNICORE metadata service 100

10.1 Enabling the metadata service . 100

10.2 Controlling metadata extraction . 101

11 Authorization back-end (PDP) guide 102

11.1 Basic configuration . 102

11.2 Available PDP modules . 103

UNICORE/X Manual

12 Guide to XACML security policies 106

12.1 Policy sets and combining of results . 108

12.2 Role-based access to services . 109

12.3 Limiting access to services to the service instance owner 110

12.4 More details on XACML use in UNICORE/X 111

12.5 Policy examples in XACML 1.1 syntax . 111

13 Proxy certificate support 114

13.1 TLS proxy support . 114

13.2 GSI tools support . 114

14 XtreemFS support 116

14.1 Site setup . 116

15 SCP support 117

15.1 Site setup . 117

15.2 SCP wrapper script . 118

16 Mail support 119

16.1 Site setup . 119

16.2 Email wrapper script . 120

17 EMIR support 120

18 The CIP (Infoprovider) 121

19 The Application service (GridBean service) 122

UNICORE/X Manual 1

The UNICORE/X server is the central component of a UNICORE site. It hosts the services such
as job submission, job management, storage access, and provides the bridge to the functionality
of the target resources, e.g. batch systems or file systems.

For more information about UNICORE visit http://www.unicore.eu.

1 Getting started

1.1 Prerequisites

To run UNICORE/X, you need the OpenJDK or Oracle Java (JRE or SDK). We recommend
using the latest version of Java 7.

If not installed on your system, you can download it from http://www.oracle.com/technetwork/-
java/javase/downloads/index.html

If using the Oracle Java, you also need to download and install the "Java Cryptography Exten-
sion (JCE) Unlimited Strength Jurisdiction Policy Files" available at the same website.

UNICORE/X has been most extensively tested on Linux-like systems, but runs on Windows
and MacOS/X as well.

Please note that

• to integrate into secure production environments, you will need access to a certificate author-
ity and generate certificates for all your UNICORE servers.

• to interface with a resource management system like SGE or Torque, you need to install and
configure the UNICORE TSI.

• to make your resources accessible outside of your firewalls, you should setup and configure a
UNICORE Gateway.

All these configuration options will be explained in the manual below.

1.2 Installation

UNICORE/X can be installed from either a tar.gz or zip archive, or (on Linux) from rpm/deb
packages.

To install from the tar.gz or zip archive, unpack the archive in a directory of your choice. You
should then review the config files in the conf/ directory, and adapt paths, hostname and ports.
The config files are commented, and you can also check Section 2.

To install from a Linux package, please use the package manager of your system to install the
archive.

http://www.unicore.eu
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

UNICORE/X Manual 2

Note
Using the Linux packages, you can install only a single UNICORE/X instance per machine
(without manual changes). The tar.gz / zip archives are self contained, and you can easily
install multiple servers per machine.

The following table gives an overview of the file locations for both tar.gz and Linux bundles.

Table 1: Directory Layout

Name in this
manual

tar.gz, zip rpm Description

CONF <basedir>/conf/ /etc/unicore/unicorex Config files
LIB <basedir>/lib/ /usr/share/unicore/unicorex/libJava libraries
LOG <basedir>/log/ /var/log/unicore/unicorex/Log files
BIN <basedir>/bin/ /usr/sbin/ Start/stop scripts
— — /etc/init.d/unicore-

unicorex
Init script

1.2.1 Starting/Stopping

There are two scripts that expect to be run from the installation directory. To start, do

cd <basedir>
bin/start.sh

Startup can take some time. After a successful start, the log files (e.g. LOG/startup.log)
contain a message "Server started." and a report on the status of any connections to other servers
(e.g. the TSI or global registry).

To stop the server, do:

cd <basedir>
bin/stop.sh

Using the init script on Linux, you would do (as root)

etc/init.d/unicore-unicorex start|stop

1.2.2 Log files

UNICORE/X writes its log file(s) to the LOG directory. By default, log files are rolled daily,
There is no automated removal of old logs, if required you will have to do this yourself.

Details about the logging configuration are given in Section 3.2.

UNICORE/X Manual 3

2 Configuration of UNICORE/X

2.1 Overview of the main configuration options

UNICORE/X is a fairly complex software which has many interfaces to other UNICORE com-
ponents and configuration options. This section tries to give an overview of what can and should
be configured. The detailed configuration guide follows in the next sections.

2.1.1 Mandatory configuration

• Certificates and basic security: UNICORE uses X.509 certificates for all servers. For UNI-
CORE/X these are configured in the wsrflite.xml config file

• Attribute sources: to map clients (i.e. X.509 certificates) to local attributes such as user name,
groups and role, various attribute sources are available. For details, consult Section 5.

• Backend / target system access: to access a resource manager like SGE or Torque, the UNI-
CORE TSI needs to be installed and UNICORE/X needs to be configured accordingly. Please
consult Section 8.

UNICORE/X has several sub-components. These are configured using several config files re-
siding in the CONF directory, see Section 1 for the location of the CONF directory.

2.2 Config file overview

The following table indicates the main configuration files. Depending on configuration and
installed extensions, some of these files may not be present, or more files may be present.

UNICORE/X watches some most configuration files for changes, and tries to reconfigure if they
are modified, at least where possible. This is indicated in the "dynamically reloaded" column.
are indicated.

Table 2: UNICORE/X configuration files

config file usage dynamically reloaded
startup.properties Java settings (e.g.

memory), lib/log/conf
directories

no

uas.config General settings, startup
behaviour, storages, AIP
setup

yes

wsrflite.xml Services to be deployed,
SSL settings, Web server
settings

yes

UNICORE/X Manual 4

Table 2: (continued)

config file usage dynamically reloaded
simpleidb Backend, installed

applications, resources
yes

xnjs.xml Back end properties no
xnjs_legacy.xml Back end properties

preconfigured for the Perl
TSI

no

logging.properties logging levels, logfiles and
their properties

yes

xacml2Policies/*.xml Access control policy for
securing the web services

yes, via xacml2.config (do
touch xacml2.config to
trigger)

xacml2.config Configure the XACML2
access control component

yes

vo.config Configure the use of UVOS
(optional attribute source)

no

simpleuudb A file mapping user DNs to
local attributes (optional
attribute source)

yes

jmxremote.password Access control file for
remote monitoring using
the Java management
extensions (JMX)

no

2.3 Settings for the UNICORE/X process (e.g. memory)

The properties controlling the Java virtual machine running the UNICORE/X process are con-
figured in

• UNIX: the CONF/startup.properties configuration file

• Windows: the "CONF\\wrapper.conf" configuration file

These properties include settings for maximum memory, and also the properties for configuring
JMX, see Section 3 for more on JMX.

General

2.4 Config file formats

UNICORE/X uses two different formats for configuration.

UNICORE/X Manual 5

2.4.1 Java properties

• Each property can be assigned a value using the syntax "name=value"

• Please do not quote values, as the quotes will be interpreted as part of the value

• Comment lines are started by the "#"

• Multiline values are possible by ending lines with "\", e.g.

name=value1 \
value2

In this example the value of the "name" property will be "value1 value2".

2.4.2 XML

Various XML dialects are being used, so please refer to the example files distributed with UNI-
CORE for more information on the syntax. In general XML is a bit unfriendly to edit, and it is
rather easy to introduce typos.

Note
It is advisable to run a tool such as xmllint after editing XML files to check for typos

2.5 UNICORE/X container configuration overview

The following table gives an overview of the basic settings for a UNICORE/X server. These
can be set in uas.config or wsrflite.xml. Many of the settings (e.g. security) will be explained in
more detail in separate sections.

Property name Type Default
value /
mandatory

Description

container.baseu-
rl

string - Server URL as visible from
the outside, usually the
gateway’s address.

container.clien-
t.[.*]

string can have
subkeys

- Properties with this prefix
are used to configure clients
created by the container.
See separate documentation
for details.

UNICORE/X Manual 6

Property name Type Default
value /
mandatory

Description

container.confi-
gfile

filesystem path - Allows to specify the
location of XML
configuration file of the
USE container. Useful only
in properties file.

container.deplo-
yment.dynamic

[true, false] false Controls whether dynamic
deployment (at runtime) of
services is enabled.

container.deplo-
yment.dynamic.j-
arDirectory

filesystem path - Directory with Jar files for
dynamic deployment.

container.exter-
nalregistry.aut-
odiscover

[true, false] false Whether to autodiscover
registries using multicast
(runtime updateable)

container.exter-
nalregistry.url*

list of
properties with
a common
prefix

- List of external registry
URLs to register local
services. (runtime
updateable)

container.exter-
nalregistry.use

[true, false] false Whether the service should
register itself in external
registry(-ies), defined
separately. (runtime
updateable)

container.host string localho-
st

Server interface to listen on.

container.httpS-
erver.[.*]

string can have
subkeys

- Properties with this prefix
are used to configure
container’s Jetty HTTP
server. See separate
documentation for details.

container.onsta-
rtup

string - Space separated list of
runnables to be executed on
server startup. It is
preferred to use onstartup.

container.onsta-
rtup.<NUMBER>

list of
properties with
a common
prefix

- List of runnables to be
executed on server startup.

container.onsta-
rtupSelftest

[true, false] true Controls whether to run
tests of connections to
external services on startup.

UNICORE/X Manual 7

Property name Type Default
value /
mandatory

Description

container.persi-
stence.[.*]

string can have
subkeys

- Properties with this prefix
are used to configure
container’s persistence
layer. See separate
documentation for details.

container.port integer [0 —
65535]

7777 Server listen port.

container.regis-
try.globalAdver-
tise

[true, false] false If this server runs a global
registry, this setting
controls whether it is
advertised using multicast.

container.resou-
rces.executor.i-
dletime

integer number 60000 The timeout in millis for
removing idle threads.

container.resou-
rces.executor.m-
axsize

integer number 32 The maximum thread pool
size for the scheduled
execution service

container.resou-
rces.executor.m-
insize

integer number 10 The minimum thread pool
size for the scheduled
execution service

container.resou-
rces.scheduled.-
idletime

integer number 60000 Timeout in millis for
removing idle threads.

container.resou-
rces.scheduled.-
size

integer >= 1 3 Defines the thread pool size
for the execution of
scheduled services.

container.secur-
ity.[.*]

string can have
subkeys

- Properties with this prefix
are used to configure
container’s security. See
separate documentation for
details.

container.servl-
etpath

string /servic-
es

Servlet context path. In
most cases shouldn’t be
changed.

container.siten-
ame

string DEMO-SI-
TE

Short, human friendly,
name of the target system,
should be unique in the
grid.

UNICORE/X Manual 8

Property name Type Default
value /
mandatory

Description

container.unico-
re.wsrflite.isP-
ersistent[.*]

[true, false] can
have subkeys

false Global setting controlling
persistence of
WS-resources state.
Additionally it can be used
as a per-service setting,
after appending a dot and
service name to the
property key.

container.wsrf.-
expirycheck.ini-
tial[.*]

integer number
can have
subkeys

120 The initial delay for
WS-resource expiry
checking (seconds).
Additionally it can be used
as a per-service setting,
after appending a dot and
service name to the
property key.

container.wsrf.-
expirycheck.per-
iod[.*]

integer number
can have
subkeys

60 The interval for
WS-resource expiry
checking (seconds).
Additionally it can be used
as a per-service setting,
after appending a dot and
service name to the
property key.

container.wsrf.-
instanceLocking-
Timeout[.*]

integer number
can have
subkeys

30 The timeout when
attempting to lock
WS-resources. Additionally
it can be used as a
per-service setting, after
appending a dot and service
name to the property key.

container.wsrf.-
lifetime.defaul-
t[.*]

integer >= 1
can have
subkeys

86400 Default lifetime of
WS-resources (in seconds).
Add dot and service name
as a suffix of this property
to set a default per
particular service type.

container.wsrf.-
lifetime.maximu-
m[.*]

integer >= 1
can have
subkeys

- Maximum lifetime of
WS-resources (in seconds).
Add dot and service name
as a suffix of this property
to set a limit per particular
service type.

UNICORE/X Manual 9

Property name Type Default
value /
mandatory

Description

container.wsrf.-
maxInstancesPer-
User[.*]

integer >= 1
can have
subkeys

2147483-
647

Maximum number per user
of WS-resource instances.
Add dot and service name
as a suffix of this property
to set a limit per particular
service type.

container.wsrf.-
persistence.per-
sist

string de.fzj.-
unicore-
.wsrfli-
te.pers-
istence-
.InMemo-
ry

Implementation used to
maintain the persistence of
WS-resources state.

container.wsrf.-
sg.defaulttermt-
ime

integer >= 1 1800 The default termination
time of service group
entries in seconds.

2.6 Integration of UNICORE/X into a UNICORE infrastructure

Since UNICORE/X is the central component, it is interfaced to other parts of the UNICORE
architecture, i.e. the Gateway and (optionally) a Registry.

2.6.1 Gateway

The gateway address is usually hard-coded into CONF/wsrflite.xml, and on the gateway side
there is an entry VSITE_NAME=address pointing to the UNICORE/X container. In some sce-
narios it’s convenient to auto-register with a gateway. This can be enabled using the contai-
ner.security.gateway.* properties.

Note
To use the autoregistration feature, the gateway configuration must be set up accordingly

2.6.2 Registry

It is possible to configure UNICORE/X to contact one or more external or "global" Registries
in order to publish information on crucial services there. Most of the following properties deal
with the automatic discovery and/or manual setup of the external registries being used.

For example

UNICORE/X Manual 10

container.externalregistry.use=true
container.externalregistry.url=https://host1:8080/REGISTRY/services ←↩

/Registry?res=default_registry
container.externalregistry.url2=https://host2:8080/BACKUP/services/ ←↩

Registry?res=default_registry

2.7 Startup code

In order to provide a flexible initialization process for the UAS, we introduce a property named
"container.onstartup". The value(s) of this property consists of a whitespace separated list of
java classes which must be implementing the "Runnable" interface. Many extensions for UNI-
CORE/X rely on an entry in this property to initialise themselves.

Table 3: Startup code

class name description usage
de.fzj.unicore.uas.util.DefaultOnStartupinitialises the job

management system and
the "local" registry; should
usually be run on startup

normal UNICORE/X
servers

de.fzj.unicore.bes.util.BESOnStartupinitialises the OGSA-BES
job management system

UNICORE/X servers that
expose BES services

de.fzj.unicore.cisprovider.impl.InitOnStartupsets up the CIS
infoprovider

UNICORE/X servers that
want to provide
information in GLUE2
format or want to be visible
in the CIS

com.intel.gpe.gridbeans.PublishGridBeanServiceif available, publishes the
GridBeanService to the
registry

UNICORE/X servers that
host a Gridbean service

de.fzj.unicore.uas.util.CreateSMSOnStartupcreates and deploys a
single instance of the SMS
that is shared between
users, named
default_storage

if a shared storage is
required

UNICORE/X Manual 11

2.8 Security

2.8.1 Overview

Security is a complex issue, and many options exist. On a high level, the following items need
to be configured.

• SSL setup (keystore and truststore settings for securing the basic communication between
components)

• Attribute sources configuration which assign an authorisation role, UNIX login, group and
other properties to Grid users. UNICORE knows several attribute sources which can be com-
bined using various combining algorithms. These are configured in the uas.config file. Due
to the complexity, the description of the configuration options can be found in Section 5.

• Access control setup (controlling in detail who can do what on which services). Again, several
options exist, which are described in Section 11.

• Message level security (message signatures). UNICORE can be configured (and is so by
default) to require digital signatures on important messages (like job submissions or file ex-
ports). When enabled UNICORE guarantees non-repudiation, i.e. the client can not deny that
it invoked the operation. Check the table below for the option allowing to disable this feature
to have a bit better performance.

2.8.2 General security options

This table presents all security related options, except credential and truststore settings which
are described in the subsequent section.

Property name Type Default
value /
mandatory

Description

container.secur-
ity.accesscontr-
ol[.*]

[true, false] can
have subkeys

true Controls whether access
checking (authorisation) is
enabled. Can be used per
service after adding dot and
service name to the
property key. (runtime
updateable)

UNICORE/X Manual 12

Property name Type Default
value /
mandatory

Description

container.secur-
ity.accesscontr-
ol.pdp

Class extending
de.fzj.unicore.wsrflite.security.pdp.UnicoreXPDP

- Controls which Policy
Decision Point (PDP, the
authorisation engine)
should be used. Default
value is determined as
follows: if
eu.unicore.uas.pdp.local.LocalHerasafPDP
is available then it is used.
If not then this option
becomes mandatory.

container.secur-
ity.accesscontr-
ol.pdpConfig

filesystem path - Path of the PDP
configuration file

container.secur-
ity.attributes[-
.*]

string can have
subkeys

- Prefix used for
configurations of particular
attribute sources.

container.secur-
ity.attributes.-
combiningPolicy

string MERGE_L-
AST_OVE-
RRIDES

What algorithm should be
used for combining the
attributes from multiple
attribute sources (if more
then one is defined).

container.secur-
ity.attributes.-
order

string - Attribute sources in
invocation order.

container.secur-
ity.credential.-
[.*]

string can have
subkeys

- Properties with this prefix
are used to configure the
credential used by the
container. See separate
documentation for details.

container.secur-
ity.defaultVOs.-
<NUMBER>

list of
properties with
a common
prefix

empty
string

List of default VOs, which
should be assigned for a
request without a VO set.
The first VO on the list
where the user is member
will be used.

container.secur-
ity.delegationT-
ruststore.[.*]

string can have
subkeys

- When separateDelegation-
Truststore is true allows to
configure the trust
delegation truststore (using
normal truststore properties
with this prefix).

UNICORE/X Manual 13

Property name Type Default
value /
mandatory

Description

container.secur-
ity.dynamicAttr-
ibutes[.*]

string can have
subkeys

- Prefix used for
configurations of particular
dynamic attribute sources.

container.secur-
ity.dynamicAttr-
ibutes.combinin-
gPolicy

string MERGE_L-
AST_OVE-
RRIDES

What algorithm should be
used for combining the
attributes from multiple
dynamic attribute sources
(if more then one is
defined).

container.secur-
ity.dynamicAttr-
ibutes.order

string - Dynamic attribute sources
in invocation order.

container.secur-
ity.gateway.cer-
tificate

filesystem path - Path to gateway’s certificate
file in PEM or DER format.
Note that DER format is
used only for files with .der
extension. It is used only
for gateway’s
authentication assertions
verification (if enabled).
Note that this is not needed
to set it if waiting for
gateway on startup is turned
on.

container.secur-
ity.gateway.che-
ckSignature

[true, false] true Controls whether gateway’s
authentication assertions
are verified.

container.secur-
ity.gateway.ena-
ble

[true, false] true Whether to accpet
gateway-based
authentication. Note that if
it is enabled either the site
must be secured (usually
via firewall) to disable
non-gateway access or the
verification of gateway’s
assertions must be enabled.

container.secur-
ity.gateway.reg-
istration

[true, false] false Whther the site should try
to autoregister itself with
the Gateway. This must be
also configured on the
Gateway side.

UNICORE/X Manual 14

Property name Type Default
value /
mandatory

Description

container.secur-
ity.gateway.reg-
istrationUpdate-
Interval

integer >= 10 30 How often the automatic
gateway registration should
be refreshed.

container.secur-
ity.gateway.wai-
tOnStartup

[true, false] true Controls whether to wait
for the gateway at startup.

container.secur-
ity.gateway.wai-
tTime

integer >= 1 180 Controls for how long to
wait for the gateway on
startup (in seconds).

container.secur-
ity.separateDel-
egationTruststo-
re

[true, false] false Significant for XSEDE
integration: when turned
on, allows for using a
separate truststore for
delegation checking then
the one used for SSL
connections checking.

container.secur-
ity.sessionLife-
time

integer >= 1 28800 Controls the lifetime of
security sessions (in
seconds).

container.secur-
ity.sessionsEna-
bled

[true, false] true Controls whether the server
supports security sessions
which reduce client/server
traffic and load.

container.secur-
ity.sessionsPer-
User

integer >= 1 5 Controls the number of
security sessions each user
can have. If exceeded, some
cleanup will be performed.

container.secur-
ity.signatures

[true, false] false Controls whether signatures
(providing non-repudiation
guarantees) on key requests
should be required. If the
system is setup without
user certificates, signatures
must be disabled.

container.secur-
ity.sslEnabled

[true, false] true Controls whether secure
SSL mode is enabled.

UNICORE/X Manual 15

Property name Type Default
value /
mandatory

Description

container.secur-
ity.trustedAsse-
rtionIssuers.[.-

*]

string can have
subkeys

- Allows for configuring a
truststore (using normal
truststore properties with
this prefix) with certificates
of trusted services (not
CAs!) which are permitted
to issue trust delegations
and authenticate with
SAML. Typically this
truststore should contain
certificates of all Unity
instanes installed.

container.secur-
ity.truststore.-
[.*]

string can have
subkeys

- Properties with this prefix
are used to configure
container’s trust settings
and certificates validation.
See separate documentation
for details.

2.8.3 Configuring PKI trust settings

Public Key Infrastructure (PKI) trust settings are used to validate certificates. This is performed,
in the first place when a connection with a remote peer is initiated over the network, using the
SSL (or TLS) protocol. Additionally certificate validation can happen in few other situations,
e.g. when checking digital signatures of various sensitive pieces of data.

Certificates validation is primarily configured using a set of initially trusted certificates of so
called Certificate Authorities (CAs). Those trusted certificates are also known as trust anchors
and their collection is called a trust store.

Except of trust anchors validation mechanism can use additional input for checking if a certifi-
cate being checked was not revoked and if its subject is in a permitted namespace.

UNICORE allows for different types of trust stores. All of them are configured using a set of
properties.

• Keystore trust store - the only format supported in older UNICORE versions. Trusted cer-
tificates are stored in a single binary file in JKS or PKCS12 format. The file can be only
manipulated using a special tool like JDK keytool or openssl (in case of PKCS12 format).
This format is great if trust store should be in a single file or when compatibility with other
Java solutions or older UNICORE releases is desired.

• OpenSSL trust store - allows to use a directory with CA certificates stored in PEM format,
under precisely defined names: the CA certificates, CRLs, signing policy files and names-
paces files are named <hash>.0, <hash>.r0, <hash>.signing_policy and <hash>.namespaces.

UNICORE/X Manual 16

Hash is the old hash of the trusted CA certificate subject name (in Openssl version > 1.0.0
use -suject_hash_old switch to generate it). If multiple certificates have the same hash then
the default zero number must be increased. This format is the same as used by other then
UNICORE popular middlewares as Globus and gLite. It is suggested when a common trust
store with such middlewares is needed.

• Directory trust store - the most flexible and convenient option, suggested for all remaining
cases. It allows to use a list of wildcard expressions, concrete paths of files or even URLs to
remote files as a set of trusted CAs and in the same way for the CRLs. With this trust store
administrator can simply configure all files (or all with a specified extension) in a directory to
be used as a trusted certificates.

In all cases trust stores can be (and by default are) configured to be automatically refreshed.

Property name Type Default
value /
mandatory

Description

container.secur-
ity.truststore.-
allowProxy

[ALLOW,
DENY]

ALLOW Controls whether proxy
certificates are supported.

container.secur-
ity.truststore.-
type

[keystore,
openssl,
directory]

mandatory
to be set

The truststore type.

container.secur-
ity.truststore.-
updateInterval

integer number 600 How often the truststore
should be reloaded, in
seconds. Set to negative
value to disable refreshing
at runtime. (runtime
updateable)

--- Directory type settings ---
container.secur-
ity.truststore.-
directoryConnec-
tionTimeout

integer number 15 Connection timeout for
fetching the remote CA
certificates in seconds.

container.secur-
ity.truststore.-
directoryDiskCa-
chePath

filesystem path - Directory where CA
certificates should be
cached, after downloading
them from a remote source.
Can be left undefined if no
disk cache should be used.
Note that directory should
be secured, i.e. normal
users should not be allowed
to write to it.

UNICORE/X Manual 17

Property name Type Default
value /
mandatory

Description

container.secur-
ity.truststore.-
directoryEncodi-
ng

[PEM, DER] PEM For directory truststore
controls whether
certificates are encoded in
PEM or DER.

container.secur-
ity.truststore.-
directoryLocati-
ons.*

list of
properties with
a common
prefix

- List of CA certificates
locations. Can contain
URLs, local files and
wildcard expressions.
(runtime updateable)

--- Keystore type settings ---
container.secur-
ity.truststore.-
keystoreFormat

string - The keystore type (jks,
pkcs12) in case of truststore
of keystore type.

container.secur-
ity.truststore.-
keystorePassword

string - The password of the
keystore type truststore.

container.secur-
ity.truststore.-
keystorePath

string - The keystore path in case of
truststore of keystore type.

--- Openssl type settings ---
container.secur-
ity.truststore.-
opensslNsMode

[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EUGRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EUGRIDP-
MA_GLOB-
US

In case of openssl
truststore, controls which
(and in which order)
namespace checking rules
should be applied. The
REQUIRE settings will
cause that all configured
namespace definitions files
must be present for each
trusted CA certificate
(otherwise checking will
fail). The AND settings will
cause to check both existing
namespace files. Otherwise
the first found is checked
(in the order defined by the
property).

--- Revocation settings ---
container.secur-
ity.truststore.-
crlConnectionTi-
meout

integer number 15 Connection timeout for
fetching the remote CRLs
in seconds (not used for
Openssl truststores).

UNICORE/X Manual 18

Property name Type Default
value /
mandatory

Description

container.secur-
ity.truststore.-
crlDiskCachePath

filesystem path - Directory where CRLs
should be cached, after
downloading them from
remote source. Can be left
undefined if no disk cache
should be used. Note that
directory should be
secured, i.e. normal users
should not be allowed to
write to it. Not used for
Openssl truststores.

container.secur-
ity.truststore.-
crlLocations.*

list of
properties with
a common
prefix

- List of CRLs locations. Can
contain URLs, local files
and wildcard expressions.
Not used for Openssl
truststores. (runtime
updateable)

container.secur-
ity.truststore.-
crlMode

[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling
mode. The IF_VALID
setting turns on CRL
checking only in case the
CRL is present.

container.secur-
ity.truststore.-
crlUpdateInterv-
al

integer number 600 How often CRLs should be
updated, in seconds. Set to
negative value to disable
refreshing at runtime.
(runtime updateable)

container.secur-
ity.truststore.-
ocspCacheTtl

integer number 3600 For how long the OCSP
responses should be locally
cached in seconds (this is a
maximum value, responses
won’t be cached after
expiration)

container.secur-
ity.truststore.-
ocspDiskCache

filesystem path - If this property is defined
then OCSP responses will
be cached on disk in the
defined folder.

container.secur-
ity.truststore.-
ocspLocalRespon-
ders.<NUMBER>

list of
properties with
a common
prefix

- Optional list of local OCSP
responders

UNICORE/X Manual 19

Property name Type Default
value /
mandatory

Description

container.secur-
ity.truststore.-
ocspMode

[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAI-
LABLE

General OCSP ckecking
mode. REQUIRE should
not be used unless it is
guaranteed that for all
certificates an OCSP
responder is defined.

container.secur-
ity.truststore.-
ocspTimeout

integer number 10000 Timeout for OCSP
connections in miliseconds.

container.secur-
ity.truststore.-
revocationOrder

[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation
sources order

container.secur-
ity.truststore.-
revocationUseAll

[true, false] false Controls whether all
defined revocation sources
should be always checked,
even if the first one already
confirmed that a checked
certificate is not revoked.

Examples

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Directory trust store, with a minimal set of options:

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.crlLocations=/trust/dir/*.crl

Directory trust store, with a complete set of options:

truststore.type=directory
truststore.allowProxy=DENY
truststore.updateInterval=1234
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.directoryLocations.2=http://caserver/ca.pem
truststore.directoryEncoding=PEM

UNICORE/X Manual 20

truststore.directoryConnectionTimeout=100
truststore.directoryDiskCachePath=/tmp
truststore.crlLocations.1=/trust/dir/*.crl
truststore.crlLocations.2=http://caserver/crl.pem
truststore.crlUpdateInterval=400
truststore.crlMode=REQUIRE
truststore.crlConnectionTimeout=200
truststore.crlDiskCachePath=/tmp

Openssl trust store:

truststore.type=openssl
truststore.opensslPath=/truststores/openssl
truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE
truststore.allowProxy=ALLOW
truststore.updateInterval=1234
truststore.crlMode=IF_VALID

Java keystore used as a trust store:

truststore.type=keystore
truststore.keystorePath=src/test/resources/certs/truststore.jks
truststore.keystoreFormat=JKS
truststore.keystorePassword=xxxxxx

2.8.4 Configuring the credential

UNICORE uses private key and a corresponding certificate (called together as a credential) to
identify users and servers. Credentials might be provided in several formats:

• Credential can be obtained from a keystore file, encoded in JKS or PKCS12 format.

• Credential can be loaded as a pair of PEM files (one with private key and another with certifi-
cate),

• or from a pair of DER files,

• or even from a single file, with PEM-encoded certificates and private key (in any order).

The following table list all parameters which allows for configuring the credential. Note that
nearly all options are optional. If not defined, the format is tried to be guessed. However some
credential formats require additional settings. For instance if using der format the keyPath is
mandatory as you need two DER files: one with certificate and one with the key (and the latter
can not be guessed).

UNICORE/X Manual 21

Property name Type Default
value /
mandatory

Description

container.secur-
ity.credential.-
path

filesystem path mandatory
to be set

Credential location. In case
of jks, pkcs12 and pem store
it is the only location
required. In case when
credential is provided in
two files, it is the certificate
file path.

container.secur-
ity.credential.-
format

[jks, pkcs12,
der, pem]

- Format of the credential. It
is guessed when not given.
Note that pem might be
either a PEM keystore with
certificates and keys (in
PEM format) or a pair of
PEM files (one with
certificate and second with
private key).

container.secur-
ity.credential.-
password

string - Password required to load
the credential.

container.secur-
ity.credential.-
keyPath

string - Location of the private key
if stored separately from
the main credential
(applicable for pem and der
types only),

container.secur-
ity.credential.-
keyPassword

string - Private key password,
which might be needed
only for jks or pkcs12, if
key is encrypted with
different password then the
main credential password.

container.secur-
ity.credential.-
keyAlias

string - Keystore alias of the key
entry to be used. Can be
ignored if the keystore
contains only one key entry.
Only applicable for jks and
pkcs12.

UNICORE/X Manual 22

Examples

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Credential as a pair of DER files:

credential.format=der
credential.password=the\!njs
credential.path=/etc/credentials/cert-1.der
credential.keyPath=/etc/credentials/pk-1.der

Credential as a JKS file (credential type can be autodetected in almost every case):

credential.path=/etc/credentials/server1.jks
credential.password=xxxxxx

2.9 Configuring the XNJS and TSI

Information on the configuration of the XNJS and TSI backend can be found in Section 8.

2.10 Configuring storages on TargetSystem instances

Each TargetSystem instance can have one or more storages attached to it. Note that this is
different case from the shared storage (the one created with CreateSMSOnStartup hook) which
is not attached to any particular TargetSystem. The practical difference is that to use storages
attached to a TargetSystem, a user must first create one.

By default, NO storages are created.

For example, to allows users access their home directory on the target system, you need to add
a storage. This is done using configuration entries in uas.config.

Property name Type Default
value /
mandatory

Description

coreServices.ta-
rgetsystem.stor-
age.N.checkExis-
tence

[true, false] true Whether the existence of
the base directory should be
checked when creating the
storage.

UNICORE/X Manual 23

Property name Type Default
value /
mandatory

Description

coreServices.ta-
rgetsystem.stor-
age.N.class

Class extending
de.fzj.unicore.uas.StorageManagement

- Storage implementation
class used (and mandatory)
in case of the CUSTOM
type.

coreServices.ta-
rgetsystem.stor-
age.N.cleanup

[true, false] false Whether files of the storage
should be removed when
the storage is destroyed.
This is mostly useful for
storage factories. (runtime
updateable)

coreServices.ta-
rgetsystem.stor-
age.N.defaultUm-
ask

integer number 77 Default (initial) umask for
files in the storage. Must be
an octal number. Note that
this property is not
updateable at runtime for
normal storages as it
wouldn’t have sense (it is
the initial umask by
definition). However in
case of storage factory it is,
i.e. after the property
change, the SMSes created
by the factory will use the
new umask as the initial
one. At runtime the SMS
umask can be changed by
the clients (if are authorized
to do so).

coreServices.ta-
rgetsystem.stor-
age.N.descripti-
on

string Filesys-
tem

Description of the storage.
It will be presented to the
users. (runtime updateable)

coreServices.ta-
rgetsystem.stor-
age.N.disableMe-
tadata

[true, false] false Whether the metadata
service should be disabled
for this storage.

coreServices.ta-
rgetsystem.stor-
age.N.disableTr-
igger

[true, false] false Whether the triggering
feature should be disabled
for this storage.

UNICORE/X Manual 24

Property name Type Default
value /
mandatory

Description

coreServices.ta-
rgetsystem.stor-
age.N.filterFil-
es

[true, false] false If set to true then this SMS
will filter returned files in
response of the
ListDirectory command:
only files owned or
accessible by the caller will
be returned. (runtime
updateable)

coreServices.ta-
rgetsystem.stor-
age.N.name

string - Storage name. If not set
then the identifier is used.

coreServices.ta-
rgetsystem.stor-
age.N.path

string - Denotes a storage base path
or the name of an
environment variable in
case of the VARIABLE
type.

coreServices.ta-
rgetsystem.stor-
age.N.protocols

string - Which protocols to enable,
default is defined by the
global container setting.
(runtime updateable)

coreServices.ta-
rgetsystem.stor-
age.N.settings.-
[.*]

string can have
subkeys

- Useful for CUSTOM
storage types: allows to set
additional settings (if
needed) by such storages.
Please refer to
documentation of a
particular custom storage
type for details. Note that
while in general updates of
the properties at runtime
are propagated to the
chosen implementation, it
is up to it to use the updated
values or ignore changes.
(runtime updateable)

coreServices.ta-
rgetsystem.stor-
age.N.type

[HOME,
FIXEDPATH,
CUSTOM,
VARIABLE]

FIXEDPA-
TH

Storage type. FIXEDPATH:
mapped to a fixed directory,
VARIABLE: resolved using
an environmental variable
lookup, CUSTOM:
specified class is used.

UNICORE/X Manual 25

Property name Type Default
value /
mandatory

Description

coreServices.ta-
rgetsystem.stor-
age.N.workdir

string - (DEPRECATED, use path
instead)

Here, "N" stands for an identifier (e.g. 1,2, 3, . . .) to distinguish the storages. For example,
to configure three storages (Home, one named TEMP pointing to "/tmp" and the other named
DEISA_HOME pointing to "$DEISA_HOME") you would add the following configuration
entries in uas.config:

coreServices.targetsystem.storage.0.name=Home
coreServices.targetsystem.storage.0.type=HOME

coreServices.targetsystem.storage.1.name=TEMP
coreServices.targetsystem.storage.1.type=FIXEDPATH
coreServices.targetsystem.storage.1.path=/tmp
coreServices.targetsystem.storage.1.protocols=UFTP BFT

coreServices.targetsystem.storage.2.name=DEISA_HOME
coreServices.targetsystem.storage.2.type=VARIABLE
coreServices.targetsystem.storage.2.path=$DEISA_HOMES

example for a custom SMS implementation (e.g. for Hadoop or iRODS ←↩
)

coreServices.targetsystem.storage.3.name=IRODS
coreServices.targetsystem.storage.3.type=CUSTOM
coreServices.targetsystem.storage.3.path=/
coreServices.targetsystem.storage.3.class=my.custom.sms. ←↩

ImplementationClass

Note that you can optionally control the file transfer protocols that should be enabled for each
storage.

2.10.1 Controlling target system’s storage resources

By default storage resource names (used in storage address) are formed from the owning user’s
xlogin and the storage type name, e.g. "someuser-Home". This is quite useful as users can write
a URL of the storage without prior searching for its address. However if the site’s user mapping
configuration, maps more then one grid certificate to the same xlogin then this solution is not
acceptable: only the first user connecting would be able to access her/his storage. This is as
resource owners are expressed as grid user names (certificate DNs) and not xlogins. To have an
unique, but dynamically created and non user friendly names of storages (and solve the problem
of non-unique DN mappings) set this option in uas.config:

coreServices.targetsystem.uniqueStorageIds=true

UNICORE/X Manual 26

2.11 Configuring the StorageFactory service

The StorageFactory service allows clients to dynamically create storage instances. These can
have different types, for example you could have storages on a normal filesystem, and other
storages on an Apache Hadoop cluster.

The basic property controls which storage types are supported

coreServices.sms.enabledFactories=TYPE1 TYPE2 ...

Each supported storage type is configured using a set of properties

Property name Type Default
value /
mandatory

Description

coreServices.sm-
s.factory.N.che-
ckExistence

[true, false] true Whether the existence of
the base directory should be
checked when creating the
storage.

coreServices.sm-
s.factory.N.cla-
ss

Class extending
de.fzj.unicore.uas.StorageManagement

- Storage implementation
class used (and mandatory)
in case of the CUSTOM
type.

coreServices.sm-
s.factory.N.cle-
anup

[true, false] false Whether files of the storage
should be removed when
the storage is destroyed.
This is mostly useful for
storage factories. (runtime
updateable)

coreServices.sm-
s.factory.N.def-
aultUmask

integer number 77 Default (initial) umask for
files in the storage. Must be
an octal number. Note that
this property is not
updateable at runtime for
normal storages as it
wouldn’t have sense (it is
the initial umask by
definition). However in
case of storage factory it is,
i.e. after the property
change, the SMSes created
by the factory will use the
new umask as the initial
one. At runtime the SMS
umask can be changed by
the clients (if are authorized
to do so).

UNICORE/X Manual 27

Property name Type Default
value /
mandatory

Description

coreServices.sm-
s.factory.N.des-
cription

string Filesys-
tem

Description of the storage.
It will be presented to the
users. (runtime updateable)

coreServices.sm-
s.factory.N.dis-
ableMetadata

[true, false] false Whether the metadata
service should be disabled
for this storage.

coreServices.sm-
s.factory.N.dis-
ableTrigger

[true, false] false Whether the triggering
feature should be disabled
for this storage.

coreServices.sm-
s.factory.N.fil-
terFiles

[true, false] false If set to true then this SMS
will filter returned files in
response of the
ListDirectory command:
only files owned or
accessible by the caller will
be returned. (runtime
updateable)

coreServices.sm-
s.factory.N.name

string - Storage name. If not set
then the identifier is used.

coreServices.sm-
s.factory.N.path

string - Denotes a storage base path
or the name of an
environment variable in
case of the VARIABLE
type.

coreServices.sm-
s.factory.N.pro-
tocols

string - Which protocols to enable,
default is defined by the
global container setting.
(runtime updateable)

coreServices.sm-
s.factory.N.set-
tings.[.*]

string can have
subkeys

- Useful for CUSTOM
storage types: allows to set
additional settings (if
needed) by such storages.
Please refer to
documentation of a
particular custom storage
type for details. Note that
while in general updates of
the properties at runtime
are propagated to the
chosen implementation, it
is up to it to use the updated
values or ignore changes.
(runtime updateable)

UNICORE/X Manual 28

Property name Type Default
value /
mandatory

Description

coreServices.sm-
s.factory.N.type

[HOME,
FIXEDPATH,
CUSTOM,
VARIABLE]

FIXEDPA-
TH

Storage type. FIXEDPATH:
mapped to a fixed directory,
VARIABLE: resolved using
an environmental variable
lookup, CUSTOM:
specified class is used.

coreServices.sm-
s.factory.N.wor-
kdir

string - (DEPRECATED, use path
instead)

For example

coreServices.sms.factory.TYPE1.description=GPFS file system
coreServices.sms.factory.TYPE1.fixedpath=GPFS file system
coreServices.sms.factory.TYPE1.path=/mnt/gpfs/unicore/unicorex-1/ ←↩

storage-factory
coreServices.sms.factory.TYPE1.protocols=UFTP BFT

if this is set to true, the directory corresponding to a storage ←↩
instance will

be deleted when the instance is destroyed. Defaults to "true"
coreServices.sms.factory.TYPE1.cleanup=true

The "path" parameter determines the base directory used for the storage instances (i.e. on the
backend), and the unique ID of the storage will be appended automatically.

The "cleanup" parameter controls whether the storage directory will be deleted when the storage
is destroyed.

The normal storage properties (see the previous section) are also accepted: "protocols", "type",
"class", "filterFiles" etc.

If you have a custom storage type, an additional "class" parameter defines the Java class name
to use (as in normal SMS case). For example:

coreServices.sms.factory.TYPE1.type=CUSTOM
coreServices.sms.factory.TYPE1.class=de.fzj.unicore.uas.hadoop. ←↩

SMSHadoopImpl

2.12 HTTP proxy, timeout and web server settings

The UNICORE Services Environment container has a number of settings related to the web
server and to the HTTPClient library used for outgoing HTTP(s) calls.

The server options are shown in the following table.

UNICORE/X Manual 29

Property name Type Default
value /
mandatory

Description

container.httpS-
erver.disabledC-
ipherSuites

string empty
string

Space separated list of SSL
cipher suites to be disabled.

container.httpS-
erver.fastRandom

[true, false] false Use insecure, but fast
pseudo random generator to
generate session ids instead
of secure generator for SSL
sockets.

container.httpS-
erver.gzip.enab-
le

[true, false] false Controls whether to enable
compression of HTTP
responses.

container.httpS-
erver.gzip.minG-
zipSize

integer number 100000 Specifies the minimal size
of message that should be
compressed.

container.httpS-
erver.highLoadC-
onnections

integer >= 1 200 If the number of
connections exceeds this
amount, then the connector
is put into a special low on
resources state. Existing
connections will be closed
faster. Note that this value
is honored only for NIO
connectors. Legacy
connectors go into low
resources mode when no
more threads are available.

container.httpS-
erver.lowResour-
ceMaxIdleTime

integer >= 1 100 In low resource conditions,
time (in ms.) before an idle
connection will time out.

container.httpS-
erver.maxIdleTi-
me

integer >= 1 200000 Time (in ms.) before an idle
connection will time out. It
should be large enough not
to expire connections with
slow clients, values below
30s are getting quite risky.

container.httpS-
erver.maxThreads

integer >= 1 255 Maximum number of
threads to have in the thread
pool for processing HTTP
connections.

container.httpS-
erver.minThreads

integer >= 1 1 Minimum number of
threads to have in the thread
pool for processing HTTP
connections.

UNICORE/X Manual 30

Property name Type Default
value /
mandatory

Description

container.httpS-
erver.requireCl-
ientAuthn

[true, false] true Controls whether the SSL
socket requires client-side
authentication.

container.httpS-
erver.soLingerT-
ime

integer number -1 Socket linger time.

container.httpS-
erver.useNIO

[true, false] true Controls whether the NIO
connector be used. NIO is
best suited under high-load,
when lots of connections
exist that are idle for long
periods.

container.httpS-
erver.wantClien-
tAuthn

[true, false] true Controls whether the SSL
socket accepts (but does not
require) client-side
authentication.

The client options are the following

Property name Type Default
value /
mandatory

Description

container.clien-
t.digitalSignin-
gEnabled

[true, false] true Controls whether signing of
key web service requests
should be performed.

container.clien-
t.httpAuthnEnab-
led

[true, false] false Whether HTTP basic
authentication should be
used.

container.clien-
t.httpPassword

string empty
string

Password for use with
HTTP basic authentication
(if enabled).

container.clien-
t.httpUser

string empty
string

Username for use with
HTTP basic authentication
(if enabled).

container.clien-
t.inHandlers

string empty
string

Space separated list of
additional handler class
names for handling
incoming WS messages

UNICORE/X Manual 31

Property name Type Default
value /
mandatory

Description

container.clien-
t.maxWsCallRetr-
ies

integer number 3 Controls how many times
the client should try to call
a failing web service. Note
that only the transient
failure reasons cause the
retry. Note that value of 0
enables unlimited number
of retries, while value of 1
means that only one call is
tried.

container.clien-
t.messageLogging

[true, false] false Controls whether messages
should be logged (at INFO
level).

container.clien-
t.outHandlers

string empty
string

Space separated list of
additional handler class
names for handling
outgoing WS messages

container.clien-
t.securitySessi-
ons

[true, false] true Controls whether security
sessions should be enabled.

container.clien-
t.serverHostnam-
eChecking

[NONE,
WARN, FAIL]

WARN Controls whether server’s
hostname should be
checked for matching its
certificate subject. This
verification prevents
man-in-the-middle attacks.
If enabled WARN will only
print warning in log, FAIL
will close the connection.

container.clien-
t.sslAuthnEnabl-
ed

[true, false] true Controls whether SSL
authentication of the client
should be performed.

container.clien-
t.wsCallRetryDe-
lay

integer number 10000 Amount of milliseconds to
wait before retry of a failed
web service call.

--- HTTP client settings ---
container.clien-
t.http.allow-ch-
unking

[true, false] true If set to false, then the
client will not use HTTP
1.1 data chunking.

container.clien-
t.http.connecti-
on-close

[true, false] false If set to true then the client
will send connection close
header, so the server will
close the socket.

UNICORE/X Manual 32

Property name Type Default
value /
mandatory

Description

container.clien-
t.http.connecti-
on.timeout

integer number 20000 Timeout for the connection
establishing (ms)

container.clien-
t.http.maxPerRo-
ute

integer number 6 How many connections per
host can be made. Note:
this is a limit for a single
client object instance.

container.clien-
t.http.maxRedir-
ects

integer number 3 Maximum number of
allowed HTTP redirects.

container.clien-
t.http.maxTotal

integer number 20 How many connections in
total can be made. Note:
this is a limit for a single
client object instance.

container.clien-
t.http.socket.t-
imeout

integer number 0 Socket timeout (ms)

--- HTTP proxy settings ---
container.clien-
t.http.nonProxy-
Hosts

string - Space (single) separated list
of hosts, for which the
HTTP proxy should not be
used.

container.clien-
t.http.proxy.pa-
ssword

string - Relevant only when using
HTTP proxy: defines
password for authentication
to the proxy.

container.clien-
t.http.proxy.us-
er

string - Relevant only when using
HTTP proxy: defines
username for authentication
to the proxy.

container.clien-
t.http.proxyHost

string - If set then the HTTP proxy
will be used, with this
hostname.

container.clien-
t.http.proxyPort

integer number - HTTP proxy port. If not
defined then system
property is consulted, and
as a final fallback 80 is
used.

container.clien-
t.http.proxyType

string HTTP HTTP proxy type: HTTP or
SOCKS.

UNICORE/X Manual 33

3 Administration

3.1 Controlling UNICORE/X memory usage

You can set a limit on the number of service instances (e.g. jobs) per user. This allows you
to make sure your server stays nicely up and running even if flooded by jobs. To enable, edit
CONF/wsrflite.xml and add properties, e.g.

<property name="unicore.maxInstancesPerUser.JobManagement" value ←↩
="200"/>

<property name="unicore.maxInstancesPerUser.FileTransferBFT" ←↩
value="20"/>

The last part of the property name is the service name as defined in wsrflite.xml.

When the limits are reached, the server will report an error to the client (e.g. when trying to
submit a new job).

3.2 Logging

UNICORE uses the Log4j logging framework (http://logging.apache.org/log4j/1.2/), which sup-
ports many useful options, such as logging to the server’s syslog (on Linux). Log4j is configured
using a config file. By default, this file is CONF/logging.properties. To change the
default, edit the start script (CONF/startup.properties) or, on Windows, the CONF/w-
rapper.conf. The config file is specified with a Java property log4j.configuration.

Note
You can change the logging configuration at runtime by editing the logging.properties file. The
new configuration will take effect a few seconds after the file has been modified.

By default, log files are written to the the LOGS directory.

The following example config file configures logging so that log files are rotated daily.

Set root logger level to INFO and its only appender to A1.
log4j.rootLogger=INFO, A1

A1 is set to be a rolling file appender with default params
log4j.appender.A1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.A1.File=logs/uas.log

#configure daily rollover: once per day the uas.log will be copied
#to a file named e.g. uas.log.2008-12-24
log4j.appender.A1.DatePattern=’.’yyyy-MM-dd

http://logging.apache.org/log4j/1.2/

UNICORE/X Manual 34

A1 uses the PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c{1} %x - ←↩

%m%n

Note
In Log4j, the log rotation frequency is controlled by the DatePattern. Check
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
for the details.

Within the logging pattern, you can use special variables to output information. In addition to
the variables defined by Log4j (such as %d), UNICORE defines several variables related to the
client and the current job.

Variable Description
%X{clientName} the distinguished name of the current

client
%X{jobID} the unique ID of the currently processed

job

A sample logging pattern might be

log4j.appender.A1.layout.ConversionPattern=%d [%X{clientName}] [%X{ ←↩
jobID}] [%t] %-5p %c{1} %x - %m%n

For more info on controlling the logging we refer to the log4j documentation:

• PatternLayout

• RollingFileAppender

• DailyRollingFileAppender

Log4j supports a very wide range of logging options, such as date based or size based file
rollover, logging different things to different files and much more. For full information on
Log4j we refer to the publicly available documentation, for example the Log4j manual.

3.2.1 Logger categories, names and levels

Logger names are hierarchical. In UNICORE, prefixes are used (e.g. "unicore.security") to
which the Java class name is appended. For example, the XUUDB connector in UNICORE/X
logs to the "unicore.security.XUUDBAuthoriser" logger.

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/manual.html

UNICORE/X Manual 35

Therefore the logging output produced can be controlled in a fine-grained manner. Log levels
in Log4j are (in increasing level of severity) TRACE, DEBUG, INFO, WARN, ERROR, amd
FATAL.

For example, to debug a security/authorisation problem in the UNICORE/X security layer, you
can set

log4j.logger.unicore.security=DEBUG

If you are just interested in XUUDB related output, you can set

log4j.logger.unicore.security=INFO
log4j.logger.unicore.security.XUUDBAuthoriser=DEBUG

so the XUUDBAuthoriser will log on DEBUG level, while the other security components log
on INFO level.

Here is a table of the various logger categories

Log category Description
unicore All of UNICORE
unicore.security Security layer
unicore.services Service operational information
unicore.services.jobexecution Information related to job execution
unicore.services.jobexecution.USAGE Usage logging (see next section)
unicore.xnjs XNJS subsystem (execution engine)
unicore.xnjs.tsi TSI subsystem (batch system connector)
unicore.client Client calls (to other servers)
unicore.wsrflite Underlying services environment (WSRF

framework)

Note
Please take care to not set the global level to TRACE or DEBUG for long times, as this will
produce a lot of output.

3.2.2 Usage logging

Often it is desirable to keep track of the usage of your UNICORE site. The UNICORE/X server
has a special logger category called unicore.services.jobexecution.USAGE which
logs information about finished jobs at INFO level. If you wish to enable this, set

log4j.logger.unicore.services.jobexecution.USAGE=INFO

UNICORE/X Manual 36

Note
If you are setting up a production environment and need a sophisticated accounting solution
(featuring database with a real resources consumption, WWW interface and possibility to
produce reports or aggregated data) then consider deploying UNICORE RUS Accounting.
Further instructions can be found in Section 8.2.

It might be convenient to send usage output to a different file than normal log output. This is
easily achieved with log4j:

send usage logger output to a separate file

use separate appender ’U1’ for usage info
log4j.logger.unicore.services.jobexecution.USAGE=INFO,U1

U1 is set to be a rolling file appender with default params
log4j.appender.U1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.U1.File=logs/usage.log
U1 uses the PatternLayout
log4j.appender.U1.layout=org.apache.log4j.PatternLayout
log4j.appender.U1.layout.ConversionPattern=%d [%t] %-5p %c{1} %x - ←↩

%m%n

For each finished job, the usage logger will log a line with the following information (if avail-
able)

[result] [executable] [actionUUID] [clientDN] [BSSJobId] [←↩
clientXlogin] [jobName] [machineName] [VOs]

An example output line is:

2011-08-16 10:00:39,513 [XNJS-1-JobRunner-1] INFO USAGE - [←↩
SUCCESSFUL] [/bin/date] [e9deab79-af1f-4704-a6bd-427b3ab20969 ←↩
] [CN=Bernd Schuller, OU=VSGC, OU=Forschungszentrum Juelich ←↩
GmbH, O=GridGermany, C=DE] [82942] [schuller] [Date job ←↩
submitted using UCC] [zam025c02.zam.kfa-juelich.de] []

3.3 Administration and monitoring

The health of a UNICORE/X container, and things like running services, lifetimes, etc. can be
monitored in several ways.

3.3.1 Commandline client (UCC)

It is possible to use the UNICORE commandline client (UCC) to list jobs, extend lifetimes, etc.

UNICORE/X Manual 37

The trick is to configure UCC so that it uses the server certificate of the UNICORE/X server,
so that UCC will have administrator rights. Also you should connect directly to UNICORE/X,
not to the registry as usual. Here is an example UCC configuration file. Say your UNICORE/X
server is running on myhost on port 7777, your preferences file would look like this

registry=https://myhost:7777/services/Registry?res=default_registry

use UNICORE/X keystore
credential.path=/path/to/unicorex/keystore
credential.password=...

truststore config omitted

Note that the registry URL points directly to the UNICORE/X server, not to a gateway.

Examples

Some UCC commands that are useful are the list-jobs, list-sites and wsrf commands. Using
list-jobs you can search for jobs with given properties, whereas the wsrf command allows to
look at any resource, or even destroy resources.

To list all jobs on the server belonging to a specific user, do

ucc list-jobs -f Log contains <username>

where username is some unique part of the user’s DN, or the xlogin. Similarly, you can filter
based on other properties of the job.

The wsrf command can be used to destroy resources, extend their lifetime and look at their
properties. Please see "ucc wsrf -h" for details.

Try

ucc wsrf getproperties https://myhost:7777/services/ ←↩
TargetSystemFactory?res=default_target_system_factory

3.3.2 The Admin web service

The Admin service is a powerful tool to get "inside information" about your server using the
UCC (or possibly another UNICORE client) and run one of the available "admin actions", which
provide useful functions.

If you have enabled the admin service, you can do

ucc admin-info -l

to get information about available admin services. Note that you need to have role "admin" to
invoke the admin service. The output includes information about the available administrative
commands. To run one of these, you can use the admin-runcommand command. For example,
to temporarily disable job submission

UNICORE/X Manual 38

ucc admin-runcommand ToggleJobSubmission

3.3.3 Java Management Extensions (JMX)

Using the Java Management Extensions, you can monitor any Java virtual machine using (for
example) a program called "jconsole" that is part of the Sun/Oracle Java SDK. It allows to check
memory and thread usage, as well as access to application specific management components
("MBeans").

Enabling access

Connecting to a running Java VM locally is always possible, however remote access needs to be
specially configured. To enable remote access to JMX, please check the startup.properties file
of UNICORE/X. There several system properties are defined that enable and configure remote
access via JMX.

#
#enable JMX (use jconsole to connect)
#
OPTS=$OPTS" -Dcom.sun.management.jmxremote"
#enable JMX remote access protected by username/password
OPTS=$OPTS" -Dcom.sun.management.jmxremote.port=9128 -Dcom.sun. ←↩

management.jmxremote.authenticate=true"
OPTS=$OPTS" -Dcom.sun.management.jmxremote.ssl=false"
OPTS=$OPTS" -Dcom.sun.management.jmxremote.password.file=conf/ ←↩

jmxremote.password"

The password file "conf/jmxremote.password" must contain lines of the form "username=password",
and must have its permissions set to "rw for owner only" (at least on Unix).

Using jconsole, you can now connect from a remote machine.

3.4 Migration of a UNICORE/X server to another physical host

If you want to migrate a UNICORE/X server to another host, there are several things to con-
sider. The hostname and port are listed in CONF/wsrflite.xml and usually in the Gateway’s
connection.properties file. These you will have to change. Otherwise, you can copy the relevant
files in CONF to the new machine. Also, the persisted state data needs to be moved to the new
machine, if it is stored on the file system. If it is stored in a database, there is nothing to be
done. If you are using a Perl TSI, you might need to edit the TSI’s properties file and update
the tsi.njs_machine property.

UNICORE/X Manual 39

4 Security concepts in UNICORE/X

This section describes the basic security concepts and architecture used in UNICORE/X. The
overall procedure performed by the security infrastructure can be summarised as follows:

• the incoming message is authenticated by the SSL layer

• extract the information used for authorisation from the message sent to the server. This infor-
mation includes: originator of the message(in case the message passed through a UNICORE
gateway), trust delegation tokens, incoming VO membership assertions, etc.

• deal with trust delegation

• generate or lookup attributes to be used used for authorisation in the configured attribute
sources

• perform policy check by executing a PDP request

All these steps can be switched on/off, and use pluggable components. Thus, the security level
of a UNICORE/X server is widely configurable

4.1 Security concepts

4.1.1 Identity

A server has a certificate, which is used to identify the server when it makes a web service
request. This certificate resides in the server keystore, and can be configured in the usual config
file (see Section 2).

4.1.2 Security tokens

When a client makes a request to UNICORE/X, a number of tokens are read from the message
headers. These are placed in the security context that each WSRF instance has. Currently,
tokens are the certificates for the UNICORE consignor and user, if available. Also, trust dele-
gation assertions are read, and it is checked if the message is signed.

4.1.3 Resource ownership

Each service is owned by some entity identified by a distinguished name (X500 Principal). By
default, the server is the owner. When a resource is created on user request (for example when
submitting a job), the user is the owner.

UNICORE/X Manual 40

4.1.4 Trust delegation

When the user and consignor are not the same, UNICORE/X will check whether the consignor
has the right to act on behalf of the user. This is done by checking whether a trust delegation
assertion has been supplied and is valid.

4.1.5 Attributes

UNICORE/X retrieves user attributes using either a local component or a remote service. In
the default configuration, the XUUDB attribute service is contacted. See Section 5 for more
information.

4.1.6 Policy checks

Each request is checked based on the following information.

• available security tokens

• the resource owner

• the resource accessed (e.g. service name + WSRF instance id)

• the activity to be performed (the web method name such as GetResourceProperty)

The validation is performed by the PDP (Policy Decision Point). The default PDP uses a list
of rules expressed in XACML 2.0 format that are configured for the server. The Section 11
describes how to configure different engines for policy evaluation including a remote one.

4.1.7 Authorisation

A request is allowed, if the PDP allows it, based on the user’s attributes.

4.1.8 Proxy certificate support

UNICORE clients can be configured to create a proxy certificate and send it to the server. On
the server, the proxy can be used to invoke GSI-based tools. Please read Section 13 about the
configuration details.

UNICORE/X Manual 41

5 Attribute sources

The authorization process in UNICORE/X requires that each Grid user (identified by an X.509
certificate or just the DN) is assigned some attributes such as her role. Attributes are also used
to subsequently incarnate the authorized user and possibly can be used for other purposes as
well (for instance for accounting).

Therefore the most important item for security configuration is selecting and maintaining a so
called attribute source (called sometimes attribute information point, AIP), which is used by
USE to assign attributes to Grid users.

Several attribute sources are available, that can even be combined for maximum flexibility and
administrative control.

There are two kinds of attribute sources:

• Classic or static attribute sources, which are used BEFORE authorization. Those attribute
sources maintain a simple mappings of user certificates (or DNs) to some attributes. The pri-
mary role of those sources is to provide attributes used for authorization, but also incarnation
attributes may be assigned.

• Dynamic attribute sources, which are used AFTER authorization, only if it was successful.
Therefore these attribute sources can assign only the incarnation attributes. The difference is
that attributes are collected for already authorized users, so the attributes can be assigned in
dynamic way not only using the user’s identity but also all the static attributes. This feature
can be used for assigning pool accounts for authorized users or adding additional supplemen-
tary gids basing on user’s Virtual Organization.

5.1 UNICORE incarnation and authorization attributes

Note that actual names of the attributes presented here are not very important. Real attribute
names are defined by attribute source (advanced attribute sources, like UVOS/SAML attribute
source, even provide a possibility to choose what attribute names are mapped to internal UNI-
CORE attributes). Therefore it is only important to know the concepts represented by the inter-
nal UNICORE attributes. On the other hand the values which are defined below are important.

The attributes in UNICORE can be multi-valued.

There are two special authorization attributes:

• role - represents an abstract user’s role. The role is used in a default (and rarely changed)
UNICORE authorization policy and in authorization process in general. There are several
possible values that are recognized by the default authorization policy:

• user - value specifies that the subject is allowed to use the site as a normal user (submit jobs,
get results, . . .)

UNICORE/X Manual 42

• admin - value specifies that the subject is an administrator and may do everything. For
example may submit jobs, get results of jobs of other users and even delete them.

• banned - user with this role is explicitly banned and all her request are denied.

• trustedAgent - this value is used to express that the subject may act as any user the
subject wants. E.g. if John has this role then can get Marry’s job results and also submit
job as Frank. It is highly suggested not to use this role, its support is minimal mostly for
backwards compatibility.

• anything else - means that user is not allowed to do anything serious. Some very basic, read-
only operations are allowed, but this is a technical detail. Also access to owned resources is
granted, what can happen if the user had the user role before. Typically it is a good practice
to use value banned in such case.

• virtualOrganisations - represents an abstract, Grid group of the user. By default it is not used
directly anywhere in the core stack, but several subsystems (as dynamic attribute sources or
jobs accounting) may be configured to use it.

There are several attributes used for incarnation:

• xlogin - specifies what local user id (in UNIX called uid) should be assigned for the grid user.

• group - specifies the primary group (primary gid) that the grid user should get.

• supplementaryGroups - specifies all supplementary groups the grid user should get.

• addDefaultGroups - boolean attribute saying whether groups assigned to the Xlogin (i.e. the
local uid of the grid user) in the operating system should be additionally added for the grid
user.

• queue - override IDB queues setting for the particular user, defining available BSS queues.

Finally UNICORE can consume other attributes. All other attributes can be used only for au-
thorization or in more advanced setups (for instance using the Unicore/X incarnation tweaker).
Currently all such additional attributes which are received from attribute source are treated as
XACML attributes and are put into XACML evaluation context. This feature is rather rarely
used, but it allows for creating a very fine grained authorization policies, using custom attributes.

Particular attribute source define how to assign these attribute to users. Not always all types
of attributes are supported by the attribute source, e.g. XUUDB can not define (among others)
per-user queues or VOs.

After introducing all the special UNICORE attributes, it must be noted that those attributes are
used in two ways. Their primary role is to strictly define what is allowed for the user. For
instance the ’Xlogin’ values specify the valid uids from which the user may choose one. One
exception here is Add operating system groups - user is always able to set this according to
his/her preference.

UNICORE/X Manual 43

The second way of using those attributes is to specify the default behavior, when the user is
not expressing a preference. E.g. a default Group (which must be single valued) specify which
group should be used, if user doesn’t provide any.

Attribute sources define the permitted values and default values for the attributes in various
ways. Some use conventions (e.g. that first permitted value is a default one), some use a pair of
real attributes to define the valid and default values of one UNICORE attribute.

5.2 Configuring Attribute Sources

Note
The following description is for configuring the classic, static attribute sources. However ev-
erything written here applies also to configuration of the dynamic sources: the only difference
is that instead of use.security.attributes. property prefix, the use.securit-
y.dynamicAttributes. should be used.

Note
The full list of options related to attribute sources is available here: Section 2.8.2.

To configure the static attribute sources, the use.security.attributes.order prop-
erty in the configuration file is used. This is a space-separated list with attribute sources names,
where the named attribute sources will be queried one after the other, allowing you to query
multiple attribute sources, override values etc.

A second property, use.security.attributes.combiningPolicy, allows you to
control how attributes from different sources are combined.

For example, the following configuration snippet

#
Authorisation attribute source configuration
#
use.security.attributes.order=XUUDB FILE

#
Combining policy
#
MERGE_LAST_OVERRIDES (default), FIRST_APPLICABLE, ←↩

FIRST_ACCESSIBLE or MERGE
use.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES

will declare two attribute sources, "XUUDB" and "FILE", which should be both queried and
combined using the MERGE_LAST_OVERRIDES policy.

UNICORE/X Manual 44

Since multiple attribute sources can be queried, it has to be defined how attributes will be com-
bined. For example, assume you have both XUUDB and FILE, and both return a xlogin attribute
for a certain user, say "xlogin_1" and "xlogin_2".

The different combining policies are

• MERGE_LAST_OVERRIDES : new attributes override those from previous sources. In our
example, the result would be "xlogin_2".

• FIRST_APPLICABLE : the attributes from the first source that returned a non empty list of
attributes are used. In our case this would be "xlogin_1". If there were no xlogin attribute for
the user in XUUDB then "xlogin_2" would be returned.

• FIRST_ACCESSIBLE : the attributes from the first source that is accessible are used. In our
case this would be "xlogin_1". This policy is useful for redundant attribute sources. E.g. you
can configure two instances of XUUDB with the same users data; the 2nd one will be tried
only if the first one is down.

• MERGE : attributes are merged. In our example, the result would be "xlogin_1, xlogin_2",
and the user would be able to choose between them.

Each of the sources needs a mandatory configuration option defining the Java class, and sev-
eral optional properties that configure the attribute source. In our example, one would need to
configure both the "XUUDB" and the "FILE" source:

use.security.attributes.XUUDB.class=...
use.security.attributes.XUUDB.xuudbHost=...
...

use.security.attributes.FILE.class=...
use.security.attributes.FILE.file=...
...

Additionally you can mix several combining policies together, see "Chained attribute source"
below for details.

5.3 Available attribute sources

5.3.1 XUUDB

The XUUDB is the standard option in UNICORE. It has the following features:

• Web service interface for querying and administration. It is suitable for serving data for
multiple clients. Usually it is deployed to handle attributes for a whole grid site.

• Access can be protected by a client-authenticated SSL

UNICORE/X Manual 45

• XUUDB can store static mappings of grid users: the local xlogin, role and project
attributes (where project maps to Unix groups)

• XUUDB since version 2 can also assign attributes in a dynamic way, e.g. from pool accounts.

• Multiple xlogins per certificate or DN, where the user can select one

• Entries are grouped using the so-called Grid component ID (GCID). This makes it easy to
assign users different attributes when accessing different UNICORE/X servers.

Full XUUDB documentation is available from http://www.unicore.eu/documentation/manuals/-
xuudb

To enable and configure the XUUDB as a static attribute source, set the following properties in
the configuration file:

use.security.attributes.order=... XUUDB ...
use.security.attributes.XUUDB.class=eu.unicore.uas.security. ←↩

XUUDBAuthoriser
use.security.attributes.XUUDB.xuudbHost=https://<xuudbhost>
use.security.attributes.XUUDB.xuudbPort=<xuudbport>
use.security.attributes.XUUDB.xuudbGCID=<your_gcid>

To enable and configure the XUUDB as a dynamic attribute source, set the following properties
in the configuration file:

use.security.dynamicAttributes.order=... XUUDB ...
use.security.dynamicAttributes.XUUDB.class=eu.unicore.uas.security. ←↩

xuudb.XUUDBDynamicAttributeSource
use.security.dynamicAttributes.XUUDB.xuudbHost=https://<xuudbhost>
use.security.dynamicAttributes.XUUDB.xuudbPort=<xuudbport>

5.3.2 SAML Virtual Organizations aware attribute source (e.g. Unity or UVOS)

UNICORE supports SAML attributes, which can be either fetched by the server or pushed
by the clients, using a Virtual Organisations aware attribute source. In the most cases Unity
is deployed as a server providing attributes and handling VOs, as it supports all UNICORE
features and therefore offers a greatest flexibility, while being simple to adopt. SAML attributes
can be used only as a static attribute source.

The SAML attribute source is described in a separate section: Section 6.

5.3.3 File attribute source

In simple circumstances, or as an addition to a XUUDB or UVOS, the file attribute source can
be used. As the name implies a simple map file is used to map DNs to xlogin, role and other
attributes (only static mappings are possible). It is useful when you don’t want to setup an

http://www.unicore.eu/documentation/manuals/xuudb
http://www.unicore.eu/documentation/manuals/xuudb

UNICORE/X Manual 46

additional service (XUUDB or UVOS) and also when you want to locally override attributes
for selected users (e.g. to ban somebody).

To use, set

use.security.attributes.order=... FILE ...
use.security.attributes.FILE.class=eu.unicore.uas.security.file. ←↩

FileAttributeSource
use.security.attributes.FILE.file=<your map file>
use.security.attributes.FILE.matching=<strict|regexp>

The map file itself has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<fileAttributeSource>

<entry key="USER DN">
<attribute name="role">

<value>user</value>
</attribute>
<attribute name="xlogin">

<value>unixuser</value>
<value>nobody</value>
...

</attribute>
...

</entry>
...

</fileAttributeSource>

You can add an arbitrary number of attributes and attribute values.

The matching option controls how a client’s DN is mapped to a file entry. In strict mode,
the canonical representation of the key is compared with the canonical representation of the
argument. In regexp mode the key is considered a Java regular expression and the argument
is matched with it. When constructing regular expressions a special care must be taken to
construct the regular expression from the canonical representation of the DN. The canonical
representation is defined here. (but you don’t have to perform the two last upper/lower case
operations). In 90% of all cases (no multiple attributes in one RDN, no special characters, no
uncommon attributes) it just means that you should remove extra spaces between RDNs.

The evaluation is simplistic: the first entry matching the client is used (which is important when
you use regular expressions).

The attributes file is automatically refreshed after any change, before a subsequent read. If the
syntax is wrong then an error message is logged and the old version is used.

Recognized attribute names are:

• xlogin

• role

http://download.oracle.com/javase/6/docs/api/javax/security/auth/x500/X500Principal.html#getName(java.lang.String)

UNICORE/X Manual 47

• group

• supplementaryGroups

• addOsGroups (with values true or false)

• queue

Attributes with those names (case insensitive) are handled as special UNICORE incarnation
attributes. The correspondence should be straightforward, e.g. the xlogin is used to provide
available local OS user names for the client.

For all attributes except of the supplementaryGroups the default value is the first one
provided. For supplementaryGroups the default value contains all defined values.

You can also define other attributes - those will be used as XACML authorization attributes,
with XACML string type.

5.3.4 Chained attribute source

Chained attribute source is a meta source which allows you to mix different combining policies
together. It is configured as other attribute sources with two parameters (except of its class):
order and combiningPolicy. The result of the chain attribute source is the set of attributes
returned by the configured chain.

Let’s consider the following example situation where we want to configure two redundant
UVOS servers (both serving the same data) to achieve high availability. Additionally we want
to override settings for some users using a local file attribute source (e.g. to ban selected users,
by assigning them the banned role).

The main chain configuration:
use.security.attributes.order=UVOS_CLUSTER FILE
use.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES

The FILE source cfg:
use.security.attributes.FILE.class=eu.unicore.uas.security.file. ←↩

FileBasedAuthoriser
use.security.attributes.FILE.file=<your map file>

The UVOS_CLUSTER is a sub chain:
use.security.attributes.UVOS_CLUSTER.class=de.fzj.unicore.uas. ←↩

security.util.AttributeSourcesChain
use.security.attributes.UVOS_CLUSTER.order=UVOS1 UVOS2
use.security.attributes.UVOS_CLUSTER.combiningPolicy= ←↩

FIRST_ACCESSIBLE

And configuration of the two real sources used in the sub chain:
use.security.attributes.UVOS1.class=...
...
use.security.attributes.UVOS2.class=...
...

UNICORE/X Manual 48

6 Virtual Organisations (VO) Support

VO (Virtual Organisation) is a quite broad concept. VO server software is used to store identities
of grid entities along with their attributes. Entities are managed with the usage of groups to help
administration. Those attributes can be used e.g. for authorization purposes. It is described here
how to take advantage of this approach in any USE based service.

6.1 Overview

6.1.1 Features

All the below features can be used in any combinations, independently:

• UVOS VOs can provide all incarnation attributes, also those which are unsupported by the
more simple attribute sources (including full support for default and allowed attributes).
Therefore it can be used as a central service for multiple sites providing incarnation settings.
As attributes can be assigned in a group scope, it is possible to use a central service with
mappings, still having some of the values (for instance uids) which are different for each site.
It is simple to assign same attribute for groups of users.

• It is possible to assign non-standard attributes and use them for access authorization.

• As it is possible (as always in UNICORE) to mix attributes from multiple attribute sources,
VO can provide grid wide settings (as UNICORE role), while local settings (like gids or
uids) are assigned locally by particular sites. This is especially useful when using a dynamic
attribute source as a complementary one to the static VO attribute source: VO source pro-
vides then authorization attributes (VO membership, role) and dynamic source assigns local
uids/gids basing on the VO attributes.

6.1.2 The modes

There are two basic modes of operation supported by this subsystem:

• PULL mode In this mode attributes are pulled (fetched) by the module from a VO service
specified in a configuration file when a new request arrives. This mode is transparent for
clients.

• PUSH mode In this mode it is user’s software responsibility to retrieve attributes from a VO
service. The VO service must return the attributes in a digitally signed document which is
called an attribute assertion. This assertion must be attached to the client’s request. The
module only verifies if the assertion is correct and if is signed by a trusted VO service.

It is possible to use both modes simultaneously.

UNICORE/X Manual 49

6.1.3 VO selection

Some of the VO features as authorization, require only information about all VO the user is the
member and associated attributes. However in many cases it is required to assign user’s request
to a particular VO and to execute it in the VO scope. This is for instance needed when a special
gid is assigned basing on the user’s VO or when VOs should be charged for their jobs.

To associate a request with a VO the user has to select one or administrator can define a default
which is used when user didn’t select a VO. User can select an effective VO using request
preference selectedVirtualOrganisation. Of course it must be one of the VOs the
user is member of. Alternatively user can use the push mode: if the pushed assertion contains
only a single VO membership attribute, this VO is used as the selected one.

Administrator can configure a list of preferred VOs. If such list is provided, then the first VO
from the list, where the user is a member is used when user don’t provide her own selection.
See the general security configuration options for the syntax: Section 2.8.2.

If it is required that all requests should have the effective VO set, then it is possible to deny other
requests using an additional rule in the authorization policy. The rule should deny all requests
that doesn’t have the selectedVO authorization attribute. See Section 12 for details.

6.1.4 Supported VO servers

Currently there are several implementations of services that can be used as server side. This
module was tested and works well with the UVOS system. Additionally VOMS system can be
used (see VOMS Support Section 6.2.3 for details). There are other possibilities and you can
try to use any SAML (2.0) Attribute service. We are interested in all success/failure stories!

6.1.5 VO deployment planning

First of all it must be decided which VO/group (in UNICORE case it absolutely doesn’t matter
whether a VO or VO subgroup is used, all subgroups can be treated as a full-fledged VOs, and
VOs are just a nick-name of top-level groups) is used by a site.

In case when site needs only generic, grid-wide attributes from a VO, a group which is common
for all sites should be used. Such group can provide for instance role attribute for the members.
Of course if uids are the same across all sites, then uids can be also assigned in such VO.

In case when site needs also some site-specific attributes, a dedicated group should be created
for the site, as a subgroup of a VO (e.g /VO1/sites/SiteA). VO administrators should assign VO-
scoped attributes in this group and make sure that all universal VO attributes are also replicated
there. Please note that UVOS allows for outsourcing VO management on a per-group basis, so
it is possible to assign administrative permissions to such group, for a site representative.

The next issue is how to handle a situation when there are multiple Xlogins/roles available for
the user, and how to mark the default one? To overcome this, for every incarnation attribute
it is possible to define two VO attributes. Base one can possess many values (e.g. in case of
Xlogins every value is a different Xlogin) while the additional attribute holds a single default

UNICORE/X Manual 50

value. When there is no need for multiple values then the base attribute can be used alone.
When default attribute is defined then its value is used unless a user provided some preferences.
Of course such preferences must be valid, i.e. be included in the allowed values of the base
attribute. This is useful in PULL mode. In PUSH mode user has a freedom of choice. She can
use the same approach as in the PULL mode or she can ignore default one, select one of the
base values and present only that one to the service.

Details on what attributes are used for those purposes are presented in the following section.

6.2 Configuration

This sections describes the default configuration file format which is used to configure VO
attribute source. This section provides a detailed and comrehensive information on all configu-
ration options. In the most cases defaults are fine - you can consult the HOWTO (below) for a
short quick start information.

Some of the configuration options require value of a VO/GROUP type. Whenever it is needed
it should be written in the following way:

/VO[/group1[/subgroup2[...]]]

where elements in square brackets are optional. E.g. /Math/users denotes a group users of
a VO called Math.

In case of Unicore/X and other USE servers the configuration is provided in a separate file, by
default the vo.config from the configuration directory of the server (you can change location
and name of this file, see below). It holds generic VO configuration which is not dependent to
the actual server used - the most of settings is configured there. This file options are described
below Section 6.2.1.

To enable the VO subsystem certain settings are also required in the main server’s configuration
file. You have to define an appropriate Attribute Source. There are two VO-related Attribute
Sources: one for each mode. You can add them both, only one or even use them multiple times.
The latter situation occurs when you want to support multiple VOs (from one or multiple VO
servers) - then you have to define one attribute source per VO (or VO group).

Example with both PUSH and PULL VO attribute sources and also with local XUUDB. Local
data from XUUDB (if exists) will override attributes received from VOs (in any mode):

use.security.attributes.order=SAML-PUSH SAML-PULL XUUDB
... here comes xuudb configuration

use.security.attributes.SAML-PUSH.class=eu.unicore.uas.security.vo. ←↩
SAMLPushAuthoriser

use.security.attributes.SAML-PUSH.configurationFile=conf/vo.config

use.security.attributes.SAML-PULL.class=eu.unicore.uas.security.vo. ←↩
SAMLPullAuthoriser

use.security.attributes.SAML-PULL.configurationFile=conf/vo.config

UNICORE/X Manual 51

The ZZZ.configurationFile configuration option is not necessary if you want to use
the conf/vo.config file for both attribute sources (as conf/vo.config is a default
configuration file). However this option is very important when you want to use more then one
UVOS PULL attribute source, as it allows you to use different configuration files for them.

When using both PUSH and PULL mode together you can disable PULL mode dynamically
for those requests that contain pushed assertions only. See vo.pull.disableIfAttrib-
utesWerePushed configuration option.

Before proceeding to fill the VO configuration it is suggested to prepare the VO truststore,
which should contain ONLY the certificates of the trusted VO servers. Note that this file must
not contain any CA certificates, only the trusted VO servers’ certificates! This file is necessary
for the PUSH mode, and optionally can be used for the PULL mode to increase security.

Logging configuration is done by means of standard UNICORE logging configuration file. See
Section 6.2.4 section for possible settings related to the VO subsystem.

Note that in Unicore/X there is a simple program which allows you to test VO Push setup. The
application is called without arguments and is called testVOPull.

6.2.1 Main VO configuration file

The main configuration file (usually vo.config) can be used to configure both PULL and
PUSH modes. The following sections provide complete reference of available options.

Property name Type Default
value /
mandatory

Description

--- General ---
vo.group string - VO or group which is

accepted by this attribute
source. Server will honour
only attributes with exactly
this scope or global (i.e.
without scope set).This will
work only with legacy
UVOS service, for Unity
configure proper scope at
server side.

vo.truststore.[-
.*]

string can have
subkeys

- Properties starting with this
prefix are used to configure
validation of VO assertion
issuers certificates. Trust
anchors should contain only
the trusted VO servers
certificates. All options are
the same as those for other
UNICORE truststores.

UNICORE/X Manual 52

Property name Type Default
value /
mandatory

Description

vo.unicoreAttri-
bute.[.*]

string can have
subkeys

- Properties starting with this
prefix are used to configure
mappings of SAML
attributes to UNICORE
internal ones.

vo.voServerURI string - Identification URI of the
VO service providing
attribtues for this source.
Only attributes issued by
this issuer will be honoured.

--- Pull mode ---
vo.localServerU-
RI

string - Can contain this, local
server SAML identifier, to
be used in SAML requests
in PULL mode. If unset
then DN identity is used for
queries, created from the
local server’s credential.

vo.pull.cacheTtl integer number 600 Controls pulled attributes
cache. Set to negative
integer to disable the
caching or to positive
number - lifetime in
seconds of cached entries.

vo.pull.disable-
IfAttributesWer-
ePushed

[true, false] true Whether pull mode should
be skipped if user sent (or
pushed) some attributes
with the request. Note that
to make this feature work
PUSH mode must be
enabled AND PULL
authorization must be
invoked AFTER PUSH
authorization.

vo.pull.enable [true, false] false Defines if pull mode should
be enabled.

vo.pull.enableG-
enericAttributes

[true, false] true If turned on, then not only
the recognized UNICORE
attributes are processed, but
also all others, which can
be used for authorization.

UNICORE/X Manual 53

Property name Type Default
value /
mandatory

Description

vo.pull.verifyS-
ignatures

[true, false] true Additional security for the
pulled assertions (except
transport level which is
always on) can be achieved
by verification of signatures
of the received assertions.
The key which is used for
verification must be present
in the VO truststore.

vo.pull.voServe-
rURL

string localho-
st

Full address (URL) of
SAML VO service. Note
that this server’s CA cert
must be present in the main
truststore of the server to
create the connection.

--- Push mode ---
vo.push.enable [true, false] false Defines if push mode

should be enabled.

The following table shows options, which are used to define mappings of SAML attributes to
UNICORE incarnation attributes (the available names of UNICORE incarnation attributes are
provided in Section 5.1).

Property name Range of
values

Description

vo.unicoreAttribute.NAME URI Value must be a SAML attribute
name which will be used as a
UNICORE internal incarnation
attribute NAME.

vo.unicoreAttribute.NAM-
E.default

URI Value must be a SAML attribute
name which will be used as a
default for UNICORE internal
incarnation attribute NAME.

vo.unicoreAttribute.NAM-
E.disabled

ANY,
IGNORED

When this attribute is present
regardless of its value the NAME
attribute won’t be mapped.

vo.unicoreAttribute.NAM-
E.pullDisabled

ANY,
IGNORED

When this attribute is present
regardless of its value the pulled
NAME attributes won’t be
mapped.

UNICORE/X Manual 54

Property name Range of
values

Description

vo.unicoreAttribute.NAM-
E.pushDisabled

ANY,
IGNORED

When this attribute is present
regardless of its value the pushed
NAME attributes won’t be
mapped.

6.2.2 Example mapping for UVOS attributes

Note that your distribution should contain a sensible default for UVOS attribute mappings,
which need not to be modified.

standard settings for the xlogin mapping, however let’s ignore ←↩
pushed xlogins

vo.unicoreAttribute.xlogin=urn:unicore:attrType:xlogin
vo.unicoreAttribute.xlogin.default=urn:unicore:attrType: ←↩

defaultXlogin
vo.unicoreAttribute.xlogin.pushDisabled=

#standard role mapping
vo.unicoreAttribute.role=urn:unicore:attrType:role
vo.unicoreAttribute.role.default=urn:unicore:attrType:defaultRole

#supplementary groups are stored in a non standard attribute
vo.unicoreAttribute.supplementaryGroups=urn:ourCompany: ←↩

secondaryGids

#and group - without default
vo.unicoreAttribute.group=urn:unicore:attrType:primaryGid

#queue mapping is defined, but will be ignored (disabled)
vo.unicoreAttribute.queue=urn:unicore:attrType:queue
vo.unicoreAttribute.queue.default=urn:unicore:attrType:defaultQueue
vo.unicoreAttribute.queue.disable=

addDefaultGroups - is not defined, so won’t be mapped

#getting the user’s groups is always a good idea
vo.unicoreAttribute.virtualOrganisations=urn:SAML:voprofile:group

6.2.3 Using VOMS-Admin with UNICORE

Attributes released by VOMS-Admin can be consumed by the UNICORE services, since its
release 2.6.2. However note the following VOMS-Admin shortcomings (in comparison to usage
of UVOS):

UNICORE/X Manual 55

• Current version of VOMS does not support a PULL mode. I.e. only the PUSH mode is
possible.

• VOMS does not allow for attribute scoping for attributes other then the role. Therefore it is
possible to store only uid/gid mapping for a single site in a VO easily. With some effort one
can store different mappings for a user too, but this requires administrator to use a different
attribute for each mapping (e.g. xlogin-vsite1, xlogin-vsite2, . . .).

• VOMS does not allow for storing multiple values per a generic attribute (any other then
the role attribute). Therefore it is not possible to define more then one allowed xlogin/-
group/queue/. . . per user.

To use VOMS-Admin first of all it must have a SAML endpoint enabled (note that it is disabled
by default).

Additionally one must take special care to set up properly attribute mappings as VOMS uses
different attributes as UVOS. The following configuration is good as a starting point:

#These must not be changed
vo.unicoreAttribute.role=http://dci-sec.org/saml/attribute/role
vo.unicoreAttribute.role.default=http://dci-sec.org/saml/attribute/ ←↩

role/primary
vo.unicoreAttribute.virtualOrganisations=http://dci-sec.org/saml/ ←↩

attribute/group

#Values of these attributes depend on VOMS generic attributes used ←↩
and should match.

vo.unicoreAttribute.xlogin=xlogin
vo.unicoreAttribute.group=group
vo.unicoreAttribute.supplementaryGroups=supplementaryGroup
vo.unicoreAttribute.addDefaultGroups=addDefaultGids
vo.unicoreAttribute.queue=queue

Note that the only possibility to pass the information about xlogin, groups and queue is using
the so called VOMS generic attributes. You can choose any names for them in VOMS-Admin,
but the names must match with your UNICORE configuration. The names of other attributes
(VO and role) are fixed. Also note that, as VOMS supports only a single value for a generic
attribute, supplementary groups and queue attributes are barely usable.

6.2.4 Logging configuration

All components use log4j logging mechanism. All events are logged with unicore.secur-
ity.vo prefix. Further logging category is either pull, push or common. Finally reporting
class name is appended.

Example snippet of log4j configuration for logging all events for VO subsystem but only INFO
and higher events for PUSH mode can be specified as follows:

log4j.logger.unicore.security.vo=TRACE
log4j.logger.unicore.security.vo.push=INFO

UNICORE/X Manual 56

6.3 VO configuration HOWTOs

6.3.1 UVOS and UNICORE - basic case

This section shows all the steps which are required to setup a UNICORE server and UVOS to
work in the PULL mode. In this scenario we will use UVOS to store at a central point mappings
of certificates to UNIX logins (Xlogins) and roles of of our users.

The required steps are:

1. Add UVOS server’s CA certificate to the UNICORE server main truststore (so UVOS
will accept connections from it).

2. Add UNICORE server’s CA certificate to the UVOS server’s truststore (so it can connect
to UVOS).

3. Often this step is optional. If you enable trust delegation support in the VO configuration
file (what is the default) you can jump to the next point. However note that some services
(very rarely) do not forward trust delegation assertions so it is better to perform this step
to be 100% sure everything will work always correctly.

Add UNICORE server’s DN (from its certificate) as a member to the UVOS service. You
don’t have to make it a member of any particular VO (or group). However it must have
the read permission to all groups where its users will be placed. UVOS documentation
contains details.

4. Create a VO (possibly with subgroups). Add grid users to the group. Here we will
assume this group is /Math-VO/UUDB/SiteA. Next assign them in the scope of the
group attribute urn:unicore:attrType:xlogin with the value of Xlogin for the
user, and attribute urn:unicore:attrType:role with the value of the user’s role
(usually its just user). Note that if you want to assign the same Xlogin/role to multiple
users then you can define UVOS group attributes and set them for the whole /Math-V-
O/UUDB/SiteA group.

5. Enable VO attribute source in the UNICORE server. Here we will configure UVOS as the
primary source and leave XUUDB to provide local mappings (which can override data
fetched from UVOS). You should have the following entries:

uas.security.attributes.order=SAML-PULL XUUDB
uas.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES
... here goes xuudb configuration

uas.security.attributes.SAML-PULL.class=eu.unicore.uas. ←↩
security.vo.SAMLPullAuthoriser

6. Configure VO attribute source (typically in the vo.config) file as follows:

vo.group=/Math-VO/UUDB/SiteA

UNICORE/X Manual 57

vo.truststore.type=directory
vo.truststore.directoryLocations.1=/opt/unicore/vo- ←↩

certificates/*.pem

vo.localServerURI=http://example.org:7777

##########################
PULL mode configuration
##########################

vo.pull.enable=true

vo.pull.cacheTtl=20

vo.pull.voHost=uvos.example.org
vo.pull.voPort=2443
vo.pull.voPath=

vo.pull.verifySignatures=false

vo.pull.enableTrustDelegation=true

Mapping of UVOS attributes (right side) to the special, ←↩
recognized by UNICORE

incarnation attributes (left)
vo.unicoreAttribute.xlogin=urn:unicore:attrType:xlogin
vo.unicoreAttribute.xlogin.default=urn:unicore:attrType: ←↩

defaultXlogin
vo.unicoreAttribute.role=urn:unicore:attrType:role
vo.unicoreAttribute.role.default=urn:unicore:attrType: ←↩

defaultRole
vo.unicoreAttribute.group=urn:unicore:attrType:primaryGid
vo.unicoreAttribute.group.default=urn:unicore:attrType: ←↩

defaultPrimaryGid
vo.unicoreAttribute.supplementaryGroups=urn:unicore:attrType: ←↩

supplementaryGids
vo.unicoreAttribute.supplementaryGroups.default=urn:unicore: ←↩

attrType:defaultSupplementaryGids
vo.unicoreAttribute.addDefaultGroups=urn:unicore:attrType: ←↩

addDefaultGroups
vo.unicoreAttribute.queue=urn:unicore:attrType:queue
vo.unicoreAttribute.queue.default=urn:unicore:attrType: ←↩

defaultQueue
vo.unicoreAttribute.virtualOrganisations=urn:SAML:voprofile: ←↩

group

7. In the VO truststore directory (/opt/unicore/vo-certificates in this case) put the UVOS
certificate (not the CA certificate) there as a PEM file, with pem extension.

UNICORE/X Manual 58

6.3.2 UVOS and UNICORE - using fine grained authorization

In this scenario we will enhance the first one to use custom authorization attributes in UNICORE
policy. To do so ensure that you have this setting in vo.config file: vo.pull.enable-
GenericAttributes=true. Then you can modify XACML policy to require certain VO
attributes.

Important fact to note here (and in case of PUSH mode too) is how the user’s group membership
is encoded as an XACML attribute. By default it is an attribute of string type (so XACML
DataType="http://www.w3.org/2001/XMLSchema#string") with its name (AttributeId) equal to
urn:SAML:voprofile:group. The example policy below uses this attribute.

The following XACML fragment allows for reaching TargetSystemFactory service only for the
users which are both members of VO Example-VO and a VO group /Math-VO/UUDB/S-
iteA. Moreover those users also must have a standard Unicore/X attribute role with a value
user. It means that in UVOS service grid user must have urn:unicore:attrType:role
attribute defined (it is the standard setting) with a value user.

<Rule RuleId="AcceptTSF" Effect="Permit">
<Description>

Accept selected users to reach TSF
</Description>
<Target>

<Resources>
<Resource>

<ResourceMatch
MatchId="urn:oasis:names:tc ←↩

:xacml:1.0:function: ←↩
anyURI-equal">

<AttributeValue DataType=" ←↩
http://www.w3.org/2001/ ←↩
XMLSchema#anyURI"

>TargetSystemFactoryService ←↩
</AttributeValue>

< ←↩
ResourceAttributeDesignator ←↩

DataType="http:// ←↩
www.w3.org ←↩
/2001/XMLSchema ←↩
#anyURI"

AttributeId="urn: ←↩
oasis:names:tc: ←↩
xacml:1.0: ←↩
resource: ←↩
resource-id" />

</ResourceMatch>
</Resource>

</Resources>
</Target>

UNICORE/X Manual 59

<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:and">
<Apply FunctionId="urn:oasis:names:tc:xacml ←↩

:1.0:function:string-equal">
<Apply FunctionId="urn:oasis:names: ←↩

tc:xacml:1.0:function:string- ←↩
one-and-only">

<SubjectAttributeDesignator
DataType="http:// ←↩

www.w3.org ←↩
/2001/XMLSchema ←↩
#string"

AttributeId="role" ←↩
/>

</Apply>
<AttributeValue

DataType="http://www.w3.org ←↩
/2001/XMLSchema#string ←↩
">user</AttributeValue>

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml ←↩

:1.0:function:any-of-all">
<Function FunctionId="urn:oasis: ←↩

names:tc:xacml:1.0:function: ←↩
string-equal"/>

<SubjectAttributeDesignator
DataType="http:// ←↩

www.w3.org ←↩
/2001/XMLSchema ←↩
#string"

AttributeId="urn: ←↩
SAML:voprofile: ←↩
group" />

<Apply FunctionId="urn:oasis:names: ←↩
tc:xacml:1.0:function:string- ←↩
bag">

<AttributeValue DataType=" ←↩
http://www.w3.org/2001/ ←↩
XMLSchema#string">/ ←↩
Example-VO</ ←↩
AttributeValue>

<AttributeValue DataType=" ←↩
http://www.w3.org/2001/ ←↩
XMLSchema#string">/Math ←↩
-VO/UUDB/SiteA</ ←↩
AttributeValue>

</Apply>
</Apply>

</Apply>

UNICORE/X Manual 60

</Condition>
</Rule>

6.3.3 PUSH-mode with VOMS

This section shows all the basic steps which are required to setup a UNICORE server and
VOMS to work in PUSH mode. Note that VOMS currently doesn’t support PULL mode at all.
If you want to use UVOS in the PUSH mode, this howto is also a good starting point - the only
difference is that you should use attribute mappings from the first, UVOS scenario.

VOMS usage is limited as it can only provide one group scoped attribute: role. Therefore
account mappings (and other site-specific attributes) must be stored elsewhere (e.g. in local file
or XUUDB database), or all mappings stored in VOMS must be the same for all scopes.

The required steps are:

1. Add VOMS server’s certificate to to the VO truststore (the point 7 in the first scenario).

2. Create a VO (possibly with subgroups) in VOMS. Add grid users to the VO and assign
them appropriate attributes. Note that the default UNICORE authorization policy uses
the user role for normal users.

3. Enable VO PULL attribute source in UNICORE configuration. Here we will configure
VOMS-PULL as the primary source and leave XUUDB to provide local mappings (which
can override data fetched from VOMS). You should have the following entries:

use.security.attributes.order=VOMS-PULL XUUDB
use.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES
... here goes xuudb configuration

use.security.attributes.VOMS-PULL.class=eu.unicore.uas. ←↩
security.vo.SAMLPushAuthoriser

4. Configure vo.config file as below:

vo.group=/voms.vo.name

#this file must contain the VOMS service certificate
vo.truststore.type=directory
vo.truststore.directoryLocations.1=/opt/unicore/vo- ←↩

certificates/*.pem

vo.localServerURI=http://example.org:7777

vo.pull.enable=false
vo.push.enable=true

Mapping of VOMS attributes (right side) to the special, ←↩
recognized by UNICORE

UNICORE/X Manual 61

incarnation attributes (left)
vo.unicoreAttribute.role=http://dci-sec.org/saml/attribute/ ←↩

role
vo.unicoreAttribute.role.default=http://dci-sec.org/saml/ ←↩

attribute/role/primary
vo.unicoreAttribute.virtualOrganisations=http://dci-sec.org/ ←↩

saml/attribute/group

The rest of UNICORE incarnation attributes won’t be provided ←↩
by VOMS out of the box,

but you can define in VOMS generic attributes, and use them. ←↩
Note that VOMS generic

attributes are always global, i.e. valid in all groups.
vo.unicoreAttribute.xlogin=someVomsGenericAttribute1

#vo.unicoreAttribute.group=
#vo.unicoreAttribute.supplementaryGroups=
#vo.unicoreAttribute.addDefaultGroups=
#vo.unicoreAttribute.queue=

At this moment your users should be able to push assertions to your site obtained from VOMS
service. Of course the VOMS service must have its SAML endpoint enabled.

7 The UNICORE persistence layer

UNICORE stores its state in data bases. The information that is stored includes

• user’s resources (instances of storage, job and other services)

• jobs

• workflows

depending on the services that are running in the container.

The job directories themselves reside on the target system, but UNICORE keeps additional
information (like, which Grid user owns a particular job).

The data on user resources is organised by service name, i.e. each service (for example, Job-
Management) stores its information in a separate database table (having the same name as the
service, e.g. "JobManagement").

The UNICORE persistence layer offers two kinds of storage:

• on the filesystem of the UNICORE/X server (using the H2 database engine)

• on a database server (MySQL, or the so-called server mode of H2)

UNICORE/X Manual 62

While the first one is very easy to setup, and easy to manage, the second option allows advanced
setups like clustering/load balancing configurations involving multiple UNICORE/X servers
sharing the same persistent data. Using MySQL has the additional benefit that the server starts
up much faster.

Data migration from one database system to another is in principle possible, but you should
select the storage carefully before going into production. In general, if you do not require
clustering/load balancing, you should choose the default filesystem option, since it is less ad-
ministrative effort.

7.1 Configuring the persistence layer

Peristence properties are configured in two files:

• wsrflite.xml for all service data

• xnjs.xml (or xnjs_legacy.xml) for job data

It is recommended to specify a configuration file using the persistence.config property.
Thus, persistence configuration can be easily shared between the job (XNJS) data and other
service data. If the "persistence.config" property is set, the given file will be read as a Java
properties file, and the properties will be used.

Note
All properties can be specified on a "per table" basis, by appending ".<TABLENAME>" to the
property name. This means you can even select different storage systems for different data,
e.g. store service data on the filesystem and jobs in MySQL. The table name is case-sensitive.

Property name Type Default
value /
mandatory

Description

persistence.cac-
he.enable[.*]

[true, false] can
have subkeys

true Enable caching.

persistence.cac-
he.maxSize[.*]

integer number
can have
subkeys

10 Maximum number of
elements in the cache
(default: 10).

persistence.cla-
ss[.*]

string can have
subkeys

de.fzj.-
unicore-
.persis-
t.impl.-
H2Persi-
st

The persistence
implementation class,
which controls with DB
backend is used.

UNICORE/X Manual 63

Property name Type Default
value /
mandatory

Description

persistence.clu-
ster.config[.*]

string can have
subkeys

- Clustering configuration
file.

persistence.clu-
ster.enable[.*]

[true, false] can
have subkeys

false Enable clustering mode.

persistence.con-
fig

filesystem path - Allows to specify a separate
properties file containing
the persistence
configuration.

persistence.dat-
abase[.*]

string can have
subkeys

- The name of the database to
connect to (e.g. when using
MySQL).

persistence.dir-
ectory[.*]

string can have
subkeys

- The directory for storing
data (embedded DBs).

persistence.dri-
ver[.*]

string can have
subkeys

- The database driver. If not
set, the default one for the
chosen DB backend is used.

persistence.h2.-
cache_size[.*]

integer number
can have
subkeys

4096 (H2) Cache size.

persistence.h2.-
options[.*]

string can have
subkeys

- (H2) Further options
separated by ;.

persistence.h2.-
server_mode[.*]

[true, false] can
have subkeys

false (H2) Connect to a H2
server.

persistence.hos-
t[.*]

string can have
subkeys

localho-
st

The database host.

persistence.ind-
ex.basedir[.*]

string can have
subkeys

/tmp The base directory for
storing the Lucene index
files.

persistence.ind-
ex.enable[.*]

[true, false] can
have subkeys

false Whether to enable the
Lucene indexer.

persistence.max-
_connections[.*]

integer number
can have
subkeys

1 Connection pool maximum
size.

persistence.mys-
ql.tabletype[.*]

string can have
subkeys

MyISAM (MySQL) Table type
(engine) to use.

persistence.pas-
sword[.*]

string can have
subkeys

empty
string

The database password.

persistence.poo-
l_timeout[.*]

integer number
can have
subkeys

3600 Connection pool timeout
when trying to get a
connection.

persistence.por-
t[.*]

integer number
can have
subkeys

3306 The database port.

UNICORE/X Manual 64

Property name Type Default
value /
mandatory

Description

persistence.sto-
re_data_as_bina-
ry[.*]

[true, false] can
have subkeys

false Whether data is stored as a
binary BLOB object (if not
using JSON format).

persistence.sto-
re_data_as_json-
[.*]

[true, false] can
have subkeys

true Whether data is stored as a
JSON String.

persistence.use-
r[.*]

string can have
subkeys

sa The database username.

persistence.ver-
sion[.*]

integer number
can have
subkeys

1 Version of the stored data.

7.1.1 Caching

By default, caching of data in memory is enabled. It can be switched off and configured on a
per-table (i.e. per entity class) basis. If you have a lot of memory for your server, you might
consider increasing the cache size for certain components.

For example, to set the maximum size of the JOBS cache to 1000, you’d configure

persistence.cache.maxSize.JOBS=1000

7.1.2 The H2 engine

H2 is a pure Java database engine. It can be used in embedded mode (i.e. the engine runs in-
process), or in server mode, if multiple UNICORE servers should use the same database server.
For more information, visit http://www.h2database.com

Connection URL

In embedded mode (i.e. the default non-server mode), the connection URL is constructed from
the configuration properties as follows

jdbc:h2:file:<persistence.directory>/<table_name>

In server mode, the connection URL is constructed as follows

jdbc:h2:tcp://<persistence.host>:<persistence.port>/<persistence. ←↩
directory>/<table_name>

http://www.h2database.com

UNICORE/X Manual 65

7.1.3 The MySQL Engine

The MySQL database engine does not need an introduction. To configure its use for UNICORE
persistence data, you need to set

persistence.class=de.fzj.unicore.persist.impl.MySQLPersist

To use MySQL, you need access to an installed MySQL server. It is beyond the scope of this
guide to describe in detail how to setup and operate MySQL. The following is a simple sequence
of steps to be performed for setting up the required database structures.

• open the mysql console

• create a dedicated user, say unicore who will connect from some server in the domain "your-
domain.com" or from the local host:

CREATE USER ’unicore’@’%.yourdomain.com’ identified by ’ ←↩
some_password’ ;

CREATE USER ’unicore’@’localhost’ identified by ’some_password’ ;

• create a dedicated database for use by the UNICORE/X server:

CREATE DATABASE ’unicore_data_demo_site’;
USE ’unicore_data_demo_site’;

• allow the unicore user access to that database:

GRANT ALL PRIVILEGES ON ’unicore_data_demo_site.*’ to ’unicore’@’ ←↩
localhost’;

GRANT ALL PRIVILEGES ON ’unicore_data_demo_site.*’ to ’unicore’@’%. ←↩
yourdomain.com’;

The UNICORE persistence properties would in this case look like this:

persistence.class=de.fzj.unicore.persist.impl.MySQLPersist
persistence.database=unicore_data_demo_site
persistence.user=unicore
persistence.password=some_password
persistence.host=<your_mysql_host>
persistence.port=<your_mysql_port>
persistence.mysql.tabletype=MyISAM

UNICORE/X Manual 66

7.2 Clustering

If you intend to run a configuration with multiple UNICORE servers accessing a shared database,
you need to enable clustering mode by setting a property

persistence.cluster.enable=true

The clustering config file can be set using a (per-table) property

persistence.cluster.config=<path to config file>

If this is not set, a default configuration is used.

For clustering, the Hazelcast library is used (http://www.hazelcast.com/documentation.jsp). A
simple TCP based configuration is

<hazelcast>
<group>

<name>dev</name>
<password>dev-pass</password>

</group>
<network>

<port auto-increment="true">5701</port>
<join>

<multicast enabled="false">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>

</multicast>
<tcp-ip enabled="true">

<interface>127.0.0.1</interface>
</tcp-ip>

</join>
<interfaces enabled="false">

<interface>10.3.17.*</interface>
</interfaces>

</network>
<executor-service>

<core-pool-size>16</core-pool-size>
<max-pool-size>64</max-pool-size>
<keep-alive-seconds>60</keep-alive-seconds>

</executor-service>
<queue name="default">

<max-size-per-jvm>10000</max-size-per-jvm>
<time-to-live-seconds>0</time-to-live-seconds>

</queue>
<map name="default">

<backup-count>1</backup-count>
<eviction-policy>NONE</eviction-policy>
<max-size>0</max-size>
<eviction-percentage>25</eviction-percentage>

http://www.hazelcast.com/documentation.jsp

UNICORE/X Manual 67

</map>
</hazelcast>

The most important part is the "tcp-ip" setting, which must list at least one other node in the
cluster. The "group" setting allows to run multiple clusters on the same set of hosts, just make
sure that the group name is the same for all nodes in a cluster.

Most of the other settings (map, executor-service, etc) are currently not important, because only
the distributed lock feature of Hazelcast is used. Please read the Hazelcast documentation for
further information.

8 Configuring the XNJS

The XNJS is the UNICORE/X component that deals with the actual job execution and file
access. It is configured using an XML file named xnjs.xml or xnjs_legacy.xml. The actual file
that is used is set in the uas.config property coreServices.targetsystemfactory.-
xnjs.configfile.

#
in uas.config
#
coreServices.targetsystemfactory.xnjs.configfile=conf/xnjs.xml

Here’s an overview of the most important properties that can be set in this file.

Table 4: Main XNJS properties

config file property
name

range of
values

default value description

xnjs.xml XNJS.filespace an absolute
path on the
target system’s
filesystem

"data/FILESPACE"the directory
on the target
system where
job directories
will be created

XNJS.statedir a path on the
UNICORE/X
machine

"data/NJSSTATE"the directory
on the
UNICORE/X
machine where
the XNJS
keeps its state

XNJS.idbfile a file or
directory name

"conf/simpleidb" the IDB
containing
application
definitions etc.

UNICORE/X Manual 68

Table 4: (continued)

config file property
name

range of
values

default value description

XNJS.numberofworkersan integer "4" the number of
worker threads
used to process
jobs

Most of the other settings in this file are used to configure the internals of the XNJS and should
usually be left at their default values.

8.1 The UNICORE TSI

This section describes installation and usage of the UNICORE TSI. This is a mandatory step if
you want to interface to batch systems such as Torque, SGE, or LoadLeveller to efficiently use
a compute cluster.

Note
Without this component, all jobs will run on the UNICORE/X server, under the user id that
started UNICORE/X.

In a nutshell, you have to perform the following steps

• Install the UNICORE TSI on your cluster front end node

• Edit the tsi.properties file

• On the UNICORE/X server, edit uas.config, simpleidb and xnjs_legacy.xml

• Start the newly installed TSI (as root in a multiuser setting)

• Restart UNICORE/X

8.1.1 Installation of the correct TSI

The TSI is a set of perl modules that is running on the target system. In case of a cluster system,
you’ll need to install it on the frontend machine(s), i.e. the machine from where your jobs
are submitted to the batch system. There are different variants available for the different batch
systems such as Torque or SGE.

Usually installation and start of the TSI will be performed as the root user. The TSI will then
be able to change to the current Grid user’s id for performing work (Note: nothing will ever be
executed as "root"). You can also use a normal user, but then all commands will be executed
under this user’s id.

UNICORE/X Manual 69

• First, download and install the UNICORE TSI package. The UNICORE core server bundle
("quickstart" package) includes the TSI in the tsi subdirectory. You should copy this folder to
the correct machine first. In the following this will be denoted by <tsidir>

• Install the correct TSI variant by

cd <tsidir>
./Install.sh

When prompted for the path, choose an appropriate on, denoted <your_tsi> in the following

• Check the tsi file in

<tsidir>/<your_tsi>/perl/tsi

especially command locations, path settings etc.

• set permissions using

cd <tsidir>
./Install_permissions.sh

• MAKE A NOTE of the exact location of the tsi_ls and tsi_df files <tsidir>/<your_tsi>/tsi_ls
and <tsidir>/<your_tsi>/tsi_df

8.1.2 Required TSI Configuration

Configuration is done by editing <tsi_dir>/conf/tsi.properties At least the following settings are
needed:

path to your tsi installation
tsi.path=<tsi_dir>/<your_tsi>

UNICORE/X machine
tsi.njs_machine=<UNICORE/X host>

UNICORE/X listener port (check unicorex/conf/xnjs_legacy.xml ←↩
variable "CLASSICTSI.replyport"

tsi.njs_port=7654

TSI listener port (check unicorex/conf/xnjs_legacy.xml variable " ←↩
CLASSICTSI.port"

tsi.my_port=4433

UNICORE/X Manual 70

8.1.3 UNICORE/X configuration

Edit unicorex/conf/uas.config and set the variable

coreServices.targetsystemfactory.xnjs.configfile=conf/xnjs_legacy. ←↩
xml

Edit unicorex/conf/xnjs_legacy.xml. Check the filespace location, this is where the local job
directories will be created. On a cluster, these have to be on a shared part of the filesystem.

Check the CLASSICTSI related properties. Set the correct value for the machine and the ports
(these can usually be left at their default values)

Set the value of CLASSICTSI.TSI_LS to the path of tsi_ls as noted above.

Set the value of CLASSICTSI.TSI_DF to the path of tsi_df as noted above.

Here is an example section for the classic TSI properties.

<eng:Property name="XNJS.tsiclass" value="de.fzj.unicore.xnjs. ←↩
legacy.LegacyTSI"/>

<!-- TSI machine and ports used -->
<eng:Property name="CLASSICTSI.machine" value="localhost"/>
<eng:Property name="CLASSICTSI.port" value="4433"/>
<eng:Property name="CLASSICTSI.replyport" value="7654"/>
<!-- location of the tsi_ls file -->
<eng:Property name="CLASSICTSI.TSI_LS" value="tsi/tsi_ls"/>
<!-- location of the tsi_df file -->
<eng:Property name="CLASSICTSI.TSI_DF" value="tsi/tsi_df"/>
<!-- commands on the target system -->
<eng:Property name="CLASSICTSI.CP" value="/bin/cp"/>
<eng:Property name="CLASSICTSI.RM" value="/bin/rm"/>
<eng:Property name="CLASSICTSI.MV" value="/bin/mv"/>
<eng:Property name="CLASSICTSI.MKDIR" value="/bin/mkdir -p"/>
<eng:Property name="CLASSICTSI.CHMOD" value="/bin/chmod"/>
<eng:Property name="CLASSICTSI.MKFIFO" value="/usr/bin/mkfifo ←↩

"/>
<eng:Property name="CLASSICTSI.PERL" value="/usr/bin/perl"/>
<!-- interval between updates of job stati (milliseconds) -->
<eng:Property name="CLASSICTSI.statusupdate.interval" value ←↩

="5000"/>
<!-- how often the XNJS will re-try to get the status of a job

in case the job is not listed in the status listing -->
<eng:Property name="CLASSICTSI.statusupdate.grace" value="0"/>
<!-- a user that is allowed to see all jobs on the batch system ←↩

-->
<eng:Property name="CLASSICTSI.priveduser" value="someuser"/>
<!-- I/O buffer size, will greatly impact filetransfer ←↩

performance -->
<eng:Property name="CLASSICTSI.BUFFERSIZE" value="1000000"/>

UNICORE/X Manual 71

8.1.4 Additional parameters

Some additional parameters exist for tuning the XNJS-TSI communication.

Table 5: XNJS-TSI communication settings

property name range of values default value description
CLASSICTSI.BUFFERSIZEinteger 1000000 Buffersize for

filetransfers in
bytes

CLASSICTSI.socket.timeoutinteger 300000 Socket timeout in
milliseconds

CLASSICTSI.socket.connect.timeoutinteger 10000 Connection timeout
in milliseconds

8.1.5 Tuning the batch system settings

UNICORE uses the normal batch system commands (e.g. qstat) to get the status of running
jobs. There is a special case if a job is not listed in the qstat output. UNICORE will then
assume the job is finished. However, in some cases this is not true, and UNICORE will have a
wrong job status. To work around, there is a special property

<!-- how often the XNJS will re-try to get the status of a job
in case the job is not listed in the status listing -->

<eng:Property name="CLASSICTSI.statusupdate.grace" value="2"/>

If the value is larger than zero, UNICORE will re-try to get the job status.

Start the TSI using (as root in a multiuser environment)

cd <tsi_dir>/conf
../bin/start_tsi

(or use the unicore-tsi init script if available in your installation)

Finally, restart the UNICORE/X server

Note
When changing TSIs, it’s a good idea to remove the UNICORE/X state and any files before
restarting. See Section 7 for details

UNICORE/X Manual 72

8.1.6 Enabling SSL for the XNJS to TSI communication

The UNICORE/X server can be set up to use SSL for communicating with the Perl TSI. On the
UNICORE/X side, this is very simple to switch on. In the XNJS config file, set the following
property to false (by default it is set to true):

<!-- enable SSL -->
<eng:Property name="CLASSICTSI.ssl.disable" value="false"/>

On the TSI side it is a bit more complex, and you need to have the TSI from the 6.3.0 distribution
or later installed. First of all, your Perl installation must include the module "IO::Socket:SSL"
and its dependencies. If you do not have it, you can get it from the CPAN archive.

In the tsi.properties configuration file, you set the keystore and truststore to be used:

SSL parameters
Keystore must contain the private TSI key and certificate
Trustore must contain the certificate of the CA
tsi.keystore=/certs/keystore.pem
tsi.keypass=yourpassword
tsi.truststore=/certs/keystore.pem

Both keystore and truststore are in pem format.

8.2 Support for the UNICORE RUS Accounting

XNJS can produce accounting data and send it (using JMS messaging) to the UNICORE RUS
Accounting which is a sophisticated and production ready system. The rus-job-processor mod-
ule from this system is included in the Unicore/X release. Note that this system is supposed to
work only when the classic (Perl) TSI is deployed.

Additionally to set up the whole UNICORE RUS Accounting, at least two additional compo-
nents are needed to be installed (rus-service with a records database and rus-bssadapter that
collects resource usage data from LRMS).

Further information on the RUS Accounting system is available in its documentation. Configu-
ration of the rus-job-processor is available in this documentation too, in the respective section.

Other components of the RUS Accounting system can be downloaded from the UNICORE Life
project, files section.

9 The IDB

The UNICORE IDB (incarnation database) contains information on how abstract job definitions
are to be mapped onto real executables. This process (called "incarnation") is performed by
the XNJS component. The second IDB function is advertising target system capabilities and
allowing to check client resource requests against these.

http://unicore-dev.zam.kfa-juelich.de/documentation/rus-accounting-1.6.0
http://sourceforge.net/projects/unicore-life/files/

UNICORE/X Manual 73

The IDB is a (set of) XML files, which by default is called simpleidb.

For reference, the current XML schema for the IDB can be read from the SVN repository.

9.1 Defining the IDB file

The IDB file is defined by the property "XNJS.idbfile", which must point to a file on the UNI-
CORE/X machine which is readable by the UNICORE/X process. For security reasons, it
should NOT be writable.

9.2 Using an IDB directory

While the IDB can be put into a single file, it is often convenient to use multiple files. In this
case, the property "XNJS.idbfile" points to a directory. This directory should contain

• a single, mandatory, "main" IDB file

• optionally, multiple XML files containing application definitions (see below)

• optionally, multiple XML files containing execution environment definitions (see Section 9.8)

The main IDB file consists of an "IDB" XML element:

<idb:IDB xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/idb">
...

</idb:IDB

while application files use the Application element

<idb:IDBApplication xmlns:idb="http://www.fz-juelich.de/unicore/ ←↩
xnjs/idb">

...
</idb:IDBApplication>

and the execution environment files look like this:

<ee:ExecutionEnvironment xmlns:ee="http://www.unicore.eu/unicore/ ←↩
jsdl-extensions">

...
</ee:ExecutionEnvironment>

9.3 Applications

The most important functionality of the IDB is providing executables for abstract applications.
An abstract application is given by name and version, whereas an executable application is
given in terms of executable, arguments and environment variables.

http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/schema/idb.xsd

UNICORE/X Manual 74

9.3.1 Simple applications

Here is an example entry for the "Date" application on a UNIX system

<idb:IDBApplication xmlns:idb="http://www.fz-juelich.de/unicore/ ←↩
xnjs/idb">

<idb:ApplicationName>Date</idb:ApplicationName>
<idb:ApplicationVersion>1.0</idb:ApplicationVersion>
<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl-posix">
<jsdl:Executable>/bin/date</jsdl:Executable>

</jsdl:POSIXApplication>
</idb:IDBApplication>

As can be seen, "Date" is simply mapped to "/bin/date".

9.3.2 Arguments

Command line arguments are specified using <Argument> tags:

<idb:IDBApplication xmlns:idb="http://www.fz-juelich.de/unicore/ ←↩
xnjs/idb">

<idb:ApplicationName>LS</idb:ApplicationName>
<idb:ApplicationVersion>1.0</idb:ApplicationVersion>
<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl-posix">
<jsdl:Executable>/bin/ls</jsdl:Executable>
<jsdl:Argument>-l</jsdl:Argument>
<jsdl:Argument>-t</jsdl:Argument>

</jsdl:POSIXApplication>
</idb:IDBApplication>

This would result in a command line "/bin/ls -l -t".

9.3.3 Conditional Arguments

The job submission from a client usually contains environment variables to be set when run-
ning the application. It often happens that a certain argument should only be included if a
corresponding environment variable is set. This can be achieved by using "conditional argu-
ments" in the incarnation definition. Conditional arguments are indicated by a quastion mark
"?" appended to the argument value:

<idb:IDBApplication>
<idb:ApplicationName>java</idb:ApplicationName>
<idb:ApplicationVersion>1.5.0</idb:ApplicationVersion>
<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl-posix">

UNICORE/X Manual 75

<jsdl:Executable>/usr/bin/java</jsdl:Executable>
<jsdl:Argument>-cp$CLASSPATH?</jsdl:Argument>
<!-- other args omitted for clarity -->

</jsdl:POSIXApplication>
</idb:IDBApplication>

Here, <jsdl:Argument>-cp$CLASSPATH?</jsdl:Argument> is an optional argu-
ment.

If a job submission now includes a Environment variable named CLASSPATH

<jsdl:Environment name="CLASSPATH">myjar.jar</jsdl:Environment>

the incarnated commandline will be "/usr/bin/java -cp$CLASSPATH . . . ", otherwise just "/us-
r/bin/java . . . ".

This allows very flexible incarnations.

9.3.4 More

For more details about IDB application definitions, please consult Section 9.6.

9.4 TargetSystemProperties

The TargetSystemProperties element contains information about a site’s available resources, as
well as additional information that should be published to clients.

9.4.1 Textual information

Simple strings can be entered into the IDB which are then accessible client-side. This is very
useful for conveying system-specifics to client code and also to users. These text-info strings
are entered into the IDB as a subtag of the TargetSystemProperties tag

Here is an example

<idb:TargetSystemProperties>

<!-- text infos -->
<idb:Info Name="Administator email">admin@site.org</idb:Info>

</idb:TargetSystemProperties>

These pieces of information are accessible client side as part of the target system properties.

UNICORE/X Manual 76

9.4.2 Resources

Resources of a target system are specified using the Resource tag defined in the JSDL specifi-
cation (see http://www.gridforum.org/documents/GFD.56.pdf). It allows to specify things like
number of nodes, CPUtime (per CPU), CPUs per node, total number of CPUs, etc.

These capabilities are specified giving an exact value and a range, for example:

<jsdl:Exact>3600</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1</jsdl:LowerBound>
<jsdl:UpperBound>86400</jsdl:UpperBound>

</jsdl:Range>

The Range gives upper and lower bounds, where as the Exact value is interpreted as the DE-
FAULT, when the client does not request anything specific. If the Exact value is specified, the
resource is part of the site’s default resource set.

There exist a number of standard settings. You may choose to not specify some of them, if they
do not make sense on your system. For example, some sites do not allow the user to explicitely
select nodes and processors per node, but only "total number of CPUs".

• jsdl:IndividualCPUTime : The wall clock time.

• jsdl:IndividualCPUCount : The number of CPUs per node

• jsdl:IndividualPhysicalMemory : The amount of memory per node (in bytes)

• jsdl:TotalResourceCount : The number of nodes.

• jsdl:TotalCPUCount : The total number of CPUs.

9.4.3 "Total CPUs" vs. "Nodes and CPUs per node"

Users can specify the number of processors either as just "total number of CPUs", or they can
give a value for both "nodes" and "CPUs per node". If both are given, the values containing
more information (i.e. nodes + CPUs per node) are used.

Similarly, if the administrator specifies both possibilities with a default value in the IDB, the
nodes + CPUs per node will have precedence.

9.4.4 CPU Architecture

JSDL allows to advertise the CPU architecture.

<jsdl:CPUArchitecture>
<jsdl:CPUArchitectureName>x86</jsdl:CPUArchitectureName>

</jsdl:CPUArchitecture>

http://www.gridforum.org/documents/GFD.56.pdf

UNICORE/X Manual 77

Due to restrictions imposed by the JSDL standard, the valid values for the CPUArchitecture-
Name element are limited to a fixed list, some useful values are "x86", "x86_64", "sparc",
"powerpc", and "other". For the full list please consult the JSDL standard.

9.4.5 Operating system

JSDL allows to advertise the operating system that the site runs.

<!-- O/S -->
<jsdl:OperatingSystem>

<jsdl:OperatingSystemType>
<jsdl:OperatingSystemName>LINUX</jsdl:OperatingSystemName>

</jsdl:OperatingSystemType>
<jsdl:OperatingSystemVersion>2.6.13</jsdl: ←↩

OperatingSystemVersion>
<jsdl:Description>Ubuntu Linux</jsdl:Description>

</jsdl:OperatingSystem>

Due to restrictions imposed by the JSDL standard, the valid values for the OperatingSystem-
Name element are limited to a fixed list, some useful values are "LINUX", "SOLARIS", "AIX",
"MACOS", "WIN_NT", "WINDOWS_XP", "FREE_BSD" and "UNKNOWN". For the full list
please consult the JSDL standard.

9.4.6 Other types of resources

Most HPC sites have special settings that cannot be mapped to the generic JSDL elements
shown in the previous section. Therefore UNICORE 6 includes a mechanism to allow sites to
specify their own system settings and allow users to set these using the Grid middleware.

Custom resources are described in Section 9.10.

9.4.7 File systems

File systems such as SCRATCH can be defined in the IDB as well, for example

<idb:TargetSystemProperties>

<!-- SCRATCH file system -->
<idb:Filesystem Name="SCRATCH" IncarnatedPath="/work/$USER" />

</idb:TargetSystemProperties>

The job’s environment will then contain a variable

SCRATCH="/work/$USER" ; export SCRATCH

JSDL data staging elements can contain the FileSystemName tag to indicate that the file should
NOT be staged into the job working directory, but into the named file system.

UNICORE/X Manual 78

9.4.8 Example Resources section

This example includes the elements defining capabilities, and some informational elements like
CPUArchitecture and operating system info.

<idb:TargetSystemProperties>
<jsdl:Resources xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl">
<jsdl:CPUArchitecture>
<jsdl:CPUArchitectureName>x86</jsdl:CPUArchitectureName>

</jsdl:CPUArchitecture>

<!-- O/S -->
<jsdl:OperatingSystem>
<jsdl:OperatingSystemType>
<jsdl:OperatingSystemName>LINUX</jsdl:OperatingSystemName>

</jsdl:OperatingSystemType>
<jsdl:OperatingSystemVersion>2.6.13</jsdl: ←↩

OperatingSystemVersion>
<jsdl:Description>A free UNIX clone</jsdl:Description>

</jsdl:OperatingSystem>

<!-- cpu time (per cpu) in seconds -->
<jsdl:IndividualCPUTime>
<jsdl:Exact>3600</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1</jsdl:LowerBound>
<jsdl:UpperBound>86400</jsdl:UpperBound>

</jsdl:Range>
</jsdl:IndividualCPUTime>

<!-- Nodes -->
<jsdl:TotalResourceCount>
<jsdl:Exact>1.0</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1.0</jsdl:LowerBound>
<jsdl:UpperBound>16.0</jsdl:UpperBound>

</jsdl:Range>
</jsdl:TotalResourceCount>

<!-- CPUs per node -->
<jsdl:IndividualCPUCount>
<jsdl:Exact>8.0</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1.0</jsdl:LowerBound>
<jsdl:UpperBound>8.0</jsdl:UpperBound>

</jsdl:Range>
</jsdl:IndividualCPUCount>

<!-- total CPUs -->

UNICORE/X Manual 79

<jsdl:TotalCPUCount>
<jsdl:Exact>8.0</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1.0</jsdl:LowerBound>
<jsdl:UpperBound>128.0</jsdl:UpperBound>

</jsdl:Range>
</jsdl:TotalCPUCount>

<!-- Memory per node (bytes) -->
<jsdl:IndividualPhysicalMemory>
<jsdl:Exact>268435456</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1024576</jsdl:LowerBound>
<jsdl:UpperBound>1073741824</jsdl:UpperBound>

</jsdl:Range>
</jsdl:IndividualPhysicalMemory>

</jsdl:Resources>
</idb:TargetSystemProperties>

9.5 Script templates

If you need to modify the scripts that are generated by UNICORE/X and sent to the TSI, you
can achieve this using two entries in the IDB.

<idb:IDB xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/idb">

<!-- Templates -->
<idb:SubmitScriptTemplate><![CDATA[
#!/bin/sh
#COMMAND
#RESOURCES
#SCRIPT
]]>
</idb:SubmitScriptTemplate>

<idb:ExecuteScriptTemplate><![CDATA[
#!/bin/sh
#COMMAND
#RESOURCES
#SCRIPT
]]>
</idb:ExecuteScriptTemplate>

<!-- rest of IDB omitted -->

</idb:IDB>

UNICORE/X Manual 80

The SubmitScriptTemplate is used for batch job submission, the ExecuteScriptTemplate is used
for everything else (e.g. creating directories, resolving user’s home, etc)

UNICORE/X generates the TSI script as follows:

• the "#COMMAND" entry will be replaced by the action for the TSI, e.g. "#TSI_SUBMIT".

• the "#RESOURCES" will be replaced by the resource requirements, e.g. "#TSI_NODES=. . . "

• the "#SCRIPT" is the user script

Modifying these templates can be used to perform special actions, such as loading modules,
or changing the shell (but use something compatible to sh). For example, to add some special
directory to the path for user scripts submitted in batch mode, you could use

<idb:IDB xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/idb">

<!-- Templates -->
<idb:SubmitScriptTemplate><![CDATA[
#!/bin/sh
#COMMAND
#RESOURCES
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/openmpi-2.1/lib; export ←↩

LD_LIBRARY_PATH
PATH=$PATH:/opt/openmpi-2.1/bin; export PATH
#SCRIPT
]]>
</idb:SubmitScriptTemplate>

<!-- rest of IDB omitted -->

</idb:IDB>

Note
Make sure that the commands added to the ExecuteScriptTGemplate DO NOT generate any
output on standard out or standard error! Always redirect any output to /dev/null!

9.5.1 Properties

In the IDB file, XNJS properties can be specified, for example the command locations identified
by property names starting with "CLASSICTSI."

<idb:IDB xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/idb">
<!--- rest of IDB omitted -->
<idb:Property name="..."

value="..."/>
</idb:IDB

UNICORE/X Manual 81

9.6 More on the IDB Application definitions

Simple application definitions and application arguments have already been covered in the pre-
vious section. Here, more details are presented.

9.6.1 Pre and post-commands

Sometimes it is useful to be able to execute one or several commands before or after the ex-
ecution of an application. For example, to add directories to the path, or perform some pre-
processing. The IDB allows to specify these using the PreCommand and PostCommand tags.

For example

<idb:IDBApplication>
<idb:ApplicationName>java</idb:ApplicationName>
<idb:ApplicationVersion>1.5.0</idb:ApplicationVersion>
<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl-posix">
<jsdl:Executable>/usr/bin/java</jsdl:Executable>
<jsdl:Argument>-cp$CLASSPATH?</jsdl:Argument>
<!-- other args omitted for clarity -->

</jsdl:POSIXApplication>
<idb:PreCommand>PATH=$PATH:/opt/myapp/bin ; export PATH</idb: ←↩

PreCommand>
<idb:PreCommand>/opt/example/aquire_license</idb:PreCommand>
<idb:PostCommand>/opt/example/release_license</idb:PostCommand>

</idb:IDBApplication>

These commands will be executed as part of the user’s job script.

9.6.2 Interactive execution when using a batch system

If an application should not be submitted to the batch system, but be run on the login node (i.e.
interactively), a flag in the IDB can be set:

<idb:IDBApplication>
<idb:ApplicationName>SomeApp</idb:ApplicationName>
<idb:ApplicationVersion>1.0</idb:ApplicationVersion>

<!-- instructs TSI to run the application interactively -->
<idb:PreferInteractive>true</idb:PreferInteractive>

<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩
/2005/11/jsdl-posix">

<!-- other args omitted for clarity -->
</jsdl:POSIXApplication>

</idb:IDBApplication>

UNICORE/X Manual 82

Note
This should only be used for very short-running tasks, since UNICORE cannot track the status
of such a task. It is simply forked by the TSI, and UNICORE will just assume it is finished after
a short while.

9.7 Application metadata (simple)

For client components it is very useful to have a description of an application in terms of its
arguments. This allows for example the "Generic" GridBean in the UNICORE Rich client to
automatically build a nice GUI for the application.

You can optionally attach metadata to an applications arguments.

<jsdl:Argument Description="Verbose Execution"
Type="boolean"
ValidValues="true false"
DependsOn="..."
Excludes="..."
IsEnabled="false"
IsMandatory="false">+v$VERBOSE?</jsdl:Argument>

Some metadata is inferred automatically, such as the argument name (VERBOSE in the example
above).

The meaning of the attributes should be fairly obvious.

• the Description attribute contains a human-readable description of the argument

• the Type attribute can have the values "string", "boolean", "int", "double", "filename" or
"choice". In the case of "choice", the ValidValues attribute is used to specify the list
of valid values. The type filename is used to specify that this is an input file for the
application, allowing clients to enable special actions for this.

• The MimeType attribute allows to specify the mime-types of an input or output file as a
comma-separated list. This can be used by smart clients, for example to check the viability
of workflows.

• The ValidValues attribute is used to limit the range of valid values, depending on the
Type of the argument. The processing of this attribute is client-dependent. The UNICORE
Rich Client supports intervals for the numeric types, and Java regular expressions for the
string types.

• DependsOn and Excludes are space-separated lists of argument names to control depen-
dencies. For example, a "VERBOSE and a "QUIET" attribute should exclude each other.

• IsMandatory (values: true or false) specifies if a parameter MUST be provided.

• IsEnabled (values: true or false) is intended to tell clients that the parameter should ini-
tially be enabled in the GUI.

UNICORE/X Manual 83

9.7.1 Application metadata (complex)

You can also add metadata as XML to the IDB entry, which allows you to add your custom
metadata:

The XML schema can be found online at http://unicore.svn.sourceforge.net/viewvc/unicore/-
jsdl-xmlbeans/trunk/src/main/schema/jsdl-unicore.xsd

Currently the XML metadata only encompass argument metadata, similar to the "simple" meta-
data described above. However, custom metadata can be added in case an application requires
it.

Here is a simple example.

<idb:IDBApplication>
<idb:ApplicationName>SomeApp</idb:ApplicationName>
<idb:ApplicationVersion>1.0</idb:ApplicationVersion>

<!-- metadata -->
<u6:Metadata xmlns:u6="http://www.unicore.eu/unicore/jsdl- ←↩

extensions">
<!-- example argument-->
<u6:Argument>
<u6:Name>PRECISION</u6:Name>
<u6:ArgumentMetadata>
<u6:Type>choice</u6:Type>
<u6:Description>Precision of the computation</u6: ←↩

Description>
<u6:ValidValue>Lax</u6:ValidValue>
<u6:ValidValue>Reasonable</u6:ValidValue>
<u6:ValidValue>Precise</u6:ValidValue>
<u6:ValidValue>Pedantic</u6:ValidValue>
<u6:IsMandatory>true</u6:IsMandatory>

</u6:ArgumentMetadata>
</u6:Argument>
<!-- any custom XML can be added as well -->
<!-- ... -->

</u6:Metadata>
</idb:IDBApplication>

The XML supports the Type, Description, MimeType, IsMandatory, DependsOn, Excludes and
ValidValue elements, with the same semantics as described above.

9.7.2 Per-application node requirements

When an application requires a special hardware or software which is available only on a subset
of cluster nodes, node filtering must be applied. It is typically solved by marking the nodes with
a special label, named node property. In application description, the required node properties
might be added as follows:

http://unicore.svn.sourceforge.net/viewvc/unicore/jsdl-xmlbeans/trunk/src/main/schema/jsdl-unicore.xsd
http://unicore.svn.sourceforge.net/viewvc/unicore/jsdl-xmlbeans/trunk/src/main/schema/jsdl-unicore.xsd

UNICORE/X Manual 84

<idb:IDBApplication>
<idb:ApplicationName>SOME_MPI_APP</idb:ApplicationName>
<idb:ApplicationVersion>1.0</idb:ApplicationVersion>
<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl-posix">
<jsdl:Executable>/opt/some_mpi_app/binary</jsdl:Executable>

</jsdl:POSIXApplication>
<!-- other elements as pre/post commands -->
<idb:BSSNodesFilter>infiniband</idb:BSSNodesFilter>
<idb:BSSNodesFilter>gpu</idb:BSSNodesFilter>

</idb:IDBApplication>

With such configuration the SOME_MPI_APP application will be executed only on nodes hav-
ing both the infiniband and gpu properties.

Note
Nodes properties will not work with the Java TSI, and need not to be supported for all kinds of
batch systems when using the legacy TSI. Please refer to the TSI documentation for details.

9.8 Execution Environments

Execution environments are an advanced feature that allows you to configure the way an ex-
ecutable is executed in a more detailed and user-friendly fashion. A common scenario is the
configuration of an environment for parallel execution of a program, such as MPI.

A typical simple MPI invocation looks like this

/usr/local/bin/openmpi -np 4 ./my_mpi_program [my_program_arguments ←↩
]

but of course there are many more possible arguments to the MPI command, which also depend
on the local installation. By using a predefined execution environment, a UNICORE user need
not know all the details, but can set up her job in a simple fashion.

This document covers the options that are available to configure execution environments in the
IDB.

• XML Schema for the execution environments: the current XML schema for the execution
environment specification can be read from the SVN repository.

9.9 IDB definition of execution environments

The server-side setup of an execution environment is by adding an XML entry into the IDB.
A simple environment might be used to run a user command using time. This example shows
every possible option. You might want to consult the man page of time.

http://unicore.svn.sourceforge.net/viewvc/unicore/jsdl-xmlbeans/trunk/src/main/schema/jsdl-unicore.xsd

UNICORE/X Manual 85

<idb:IDB xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/idb">

<!-- sample execution environment definition in the IDB -->
<ee:ExecutionEnvironment xmlns:ee="http://www.unicore.eu/unicore/ ←↩

jsdl-extensions">
<ee:Name>TIME</ee:Name>
<ee:Version>1.0</ee:Version>
<ee:Description>Runs the user’s command using the ’time’ tool, ←↩

measuring the used CPU time.</ee:Description>
<ee:ExecutableName>/usr/bin/time</ee:ExecutableName>
<ee:CommandlineTemplate>#EXECUTABLE #ARGS #USERCOMMAND # ←↩

USERARGS</ee:CommandlineTemplate>
<ee:Argument>
<ee:Name>Output</ee:Name>
<ee:IncarnatedValue>-o</ee:IncarnatedValue>
<ee:ArgumentMetadata>
<ee:Type>string</ee:Type>
<ee:Description>Write the resource use statistics to a FILE ←↩

instead of to the standard error stream</ee: ←↩
Description>

</ee:ArgumentMetadata>
</ee:Argument>
<ee:Option>
<ee:Name>Verbose</ee:Name>
<ee:IncarnatedValue>-v</ee:IncarnatedValue>
<ee:OptionMetadata>
<ee:Description>Enable verbose mode</ee:Description>

</ee:OptionMetadata>
</ee:Option>
<ee:PreCommand>
<ee:Name>PRINT_START_TIME</ee:Name>
<ee:IncarnatedValue>echo "Started at $(date)"</ee: ←↩

IncarnatedValue>
<ee:OptionMetadata>
<ee:Description>Explicitely print the start time</ee: ←↩

Description>
</ee:OptionMetadata>

</ee:PreCommand>
<ee:PostCommand>
<ee:Name>PRINT_FINISH_TIME</ee:Name>
<ee:IncarnatedValue>echo "Finished at $(date)"</ee: ←↩

IncarnatedValue>
<ee:OptionMetadata>
<ee:Description>Explicitely print the finishing time</ee: ←↩

Description>
</ee:OptionMetadata>

</ee:PostCommand>
</ee:ExecutionEnvironment>

UNICORE/X Manual 86

</idb:IDB>

If a client now submits a job including a request for the "TIME" execution environment (in
the JSDL Resources element), UNICORE will generate a shell script that wraps the user
command in the "time" invocation. Let’s say the job request includes the "Output" argument,
the "Verbose" option and both precommand and postcommand:

<!-- sample execution environment request sent from client to ←↩
server -->

<ee:ExecutionEnvironment xmlns:ee="http://www.unicore.eu/unicore/ ←↩
jsdl-extensions">

<ee:Name>TIME</ee:Name>
<ee:Version>1.0</ee:Version>
<ee:Argument>
<ee:Name>Output</ee:Name>
<ee:Value>time_profile</ee:IncarnatedValue>

</ee:Argument>
<ee:Option>
<ee:Name>Verbose</ee:Name>

</ee:Option>
<ee:PreCommand runOnLoginNode="false">
<ee:Name>PRINT_START_TIME</ee:Name>

</ee:PreCommand>
<ee:PostCommand runOnLoginNode="false">
<ee:Name>PRINT_FINISH_TIME</ee:Name>

</ee:PostCommand>
</ee:ExecutionEnvironment>

The script generated by UNICORE will look like this (leaving out some standard things):

#!/bin/bash

...

echo "Started at $(date)"
/usr/bin/time -o time_profile -v /path/to/my_user_application
echo "Finished at $(date)"

...

In the following the various XML tags that are available are explained in detail.

• ExecutableName : This is the name of the executable that "defines" the environment.

• CommandlineTemplate : To control the exact commandline that is created, this template
is used.

The default template is

UNICORE/X Manual 87

#EXECUTABLE #ARGS #USERCOMMAND #USERARGS

where

• #EXECUTABLE is the executable defined using ExecutableName

• #ARGS are the arguments and options for the executable

• #USERCOMMAND is the user’s executable

• #USERARGS are the arguments to the user’s executable

• Argument : the Argument elements are used to create arguments to the executable. They
have several subtags.

• Name is the name of the argument.

• IncarnatedValue is the argument as used in the commandline.

• ArgumentMetadata are described below.

• ArgumentMetadata : This element allows to describe an Argument in more detail. It has
the following subtags

• Type the argument type. Valid values are "string", "boolean", "int", "float" and "choice"

• Description is a human-friendly description

• Default a possible default value

• ValidValue tags are used to denote possible values

• DependsOn denotes other arguments that this argument requires

• Excludes denotes other arguments that clash with this argument

• PreCommand : This tag denotes a command that is executed immediately before the actual
executable. Its subtags are the same as for Option. It has an additional attribute (with values
"true" or "false") runOnLoginNode which controls whether the precommand is executed
on the login node, or whether it is executed on the compute node (i.e. whether it is part of the
job script sent to the TSI). By default, the precommand is executed on the login node.

• PostCommand : This tag denotes a command that is executed after the actual execution. Its
subtags are the same as for PreCommand.

UNICORE/X Manual 88

9.10 Custom resource definitions

Most sites (especially in HPC) have special settings that cannot be mapped to the generic JSDL
elements shown in the previous section. Therefore UNICORE 6 includes a mechanism to allow
sites to specify their own system settings and allow users to set these using the Grid middleware.

This requires two things

• Custom resource definitions in the IDB

• Customisation of the TSI Submit.pm module

If this mechanism is not flexible enough for your needs, consider looking at dynamic incarnation
which is described in Section 9.11.

9.10.1 The IDB

You can insert <Resource> elements into the Resources section, an example follows.

<jsdl:Resources>

<idb:Resource xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/ ←↩
idb">

<idb:Name>TasksPerNode</idb:Name>
<idb:Type>int</idb:Type>
<idb:Description>The number of tasks per node. If larger than ←↩

32, the node will run in SMT mode.</idb:Description>
<idb:Min>1</idb:Min>
<idb:Max>64</idb:Max>
<idb:Default>32</idb:Default>

</idb:Resource>

</jsdl:Resources>

Apart from the numeric types <int> or <double>, there are the <string>, <choice> and <boolean>
types. The <choice> allows you to specify a set of allowed values. This is useful for example
to specify a selection of batch queues, or a selection of network topologies.

For example, defining queues could look like this:

<jsdl:Resources>

<idb:Resource xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/ ←↩
idb">

<idb:Name>Queue</idb:Name>
<idb:Type>choice</idb:Type>
<idb:Description>The batch queue to use</idb:Description>
<idb:Default>normal</idb:Default>
<idb:AllowedValue>normal</idb:AllowedValue>

UNICORE/X Manual 89

<idb:AllowedValue>fast</idb:AllowedValue>
<idb:AllowedValue>small</idb:AllowedValue>
<idb:AllowedValue>development</idb:AllowedValue>

</idb:Resource>

</jsdl:Resources>

This example defines four available queues, with the "normal" one being used by default.

Note
The resource name "Queue" is recognized automatically by UNICORE and mapped to the
correct TSI_QUEUE parameter when sending the job to the TSI.

Note
The resource name "Project" (i.e. the "TSI_PROJECT" TSI parameter) is mapped to the
account parameter of the batch system, for example "-A" in the case of Torque. Note that
JSDL has also a parameter allowing the user to set a job’s project. It will be also translated
to the TSI_PROJECT parameter. The JSDL project is currently an independent feature to the
resource-defined "Project" and if IDB defines ranges for the resource "Project", then the JSDL
project is not checked against them. If both JSDL project and resource "Project" are received
then the one defined as the resource takes the precedence.

9.10.2 Submitted JSDL

Clients can now send a special element in the JSDL job, for example requesting a certain value
for the "TasksPerNode" setting:

<jsdl:JobDescription>
...

<jsdl:Resources>

<jsdl-u:ResourceRequest xmlns:jsdl-u="http://www.unicore. ←↩
eu/unicore/jsdl-extensions">

<jsdl-u:Name>TasksPerNode</jsdl-u:Name>
<jsdl-u:Value>64</jsdl-u:Value>

</jsdl-u:ResourceRequest>

</jsdl:Resources>
</jsdl:JobDescription>

or for the queue example:

<jsdl:JobDescription>
...

UNICORE/X Manual 90

<jsdl:Resources>

<jsdl-u:ResourceRequest xmlns:jsdl-u="http://www.unicore. ←↩
eu/unicore/jsdl-extensions">

<jsdl-u:Name>Queue</jsdl-u:Name>
<jsdl-u:Value>development</jsdl-u:Value>

</jsdl-u:ResourceRequest>

</jsdl:Resources>
</jsdl:JobDescription>

9.10.3 TSI request

The UNICORE/X server will send the following snippet to the TSI:

#!/bin/sh
#TSI_SUBMIT
...
#TSI_SSR_TASKSPERNODE 64.0
....

As you can see, a special TSI command tag "#TSI_SSR_TASKSPERNODE" has been added.
Now the remaining step is to have the TSI Submit.pm module has to parse this properly, and
generate the correct batch system command.

Note that every name of a custom resource defined in IDB is converted to upper case and spaces
are replaced with the underscore character "_".

9.11 Tweaking the incarnation process

In UNICORE the term incarnation refers to the process of changing the abstract and probably
universal grid request into a sequence of operations local to the target system. The most fun-
damental part of this process is creation of the execution script which is invoked on the target
system (usually via a batch queuing subsystem (BSS)) along with an execution context which
includes local user id, group, BSS specific resource limits.

UNICORE provides a flexible incarnation model - most of the magic is done automatically by
TSI scripts basing on configuration which is read from the IDB. IDB covers script creation
(using templates, abstract application names etc). Mapping of the grid user to the local user is
done by using UNICORE Attribute Sources like XUUDB or UVOS.

In rare cases the standard UNICORE incarnation mechanism is not flexible enough. Typically
this happens when the script which is sent to TSI should be tweaked in accordance to some
runtime constraints. Few examples may include:

• Administrator wants to set memory requirements for all invocations of the application X
to 500MB if user requested lower amount of memory (as the administrator knows that the
application consumes always at least this amount of memory).

UNICORE/X Manual 91

• Administrator wants to perform custom logging of suspected requests (which for instance
exceed certain resource requirements threshold)

• Administrator need to invoke a script that create a local user’s account if it doesn’t exist.

• Administrator wants to reroute some requests to a specific BSS queue basing on the arbitrary
contents of the request.

• Administrator wants to set certain flags in the script which is sent to TSI when a request came
from the member of a specific VO. Later those flags are consumed by TSI and are used as
submission parameters.

Those and all similar actions can be performed with the Incarnation tweaking subsystem. Note
that though it is an extremely powerful mechanism, it is also a very complicated one and con-
figuring it is error prone. Therefore always try to use the standard UNICORE features (like
configuration of IDB and attribute sources) in the first place. Treat this incarnation tweaking
subsystem as the last resort!

To properly configure this mechanism at least a very basic Java programming language familiar-
ity is required. Also remember that in case of any problems contacting the UNICORE support
mailing list can be the solution.

9.11.1 Operation

It is possible to influence incarnation in two ways:

• BEFORE-SCRIPT it is possible to change all UNICORE variables which are used to produce
the final TSI script just before it is created and

• AFTER-SCRIPT later on to change the whole TSI script.

The first BEFORE-SCRIPT option is suggested: it is much easier as you have to modify some
properties only. In the latter much more error prone version you can produce an entirely new
script or just change few lines of the script which was created automatically. It is also possible
to use both solutions simultaneously.

Both approaches are configured in a very similar way by defining rules. Each rule has its
condition which triggers it and list of actions which are invoked if the condition was evaluated
to true. The condition is in both cases expressed in the same way. The difference is in case
of actions. Actions for BEFORE-SCRIPT rules can modify the incarnation variables but do
not return a value. Actions for AFTER-SCRIPT read as its input the original TSI script and
must write out the updated version. Theoretically AFTER-SCRIPT actions can also modify the
incarnation variables but this doesn’t make sense as those variables won’t be used.

UNICORE/X Manual 92

9.11.2 Basic configuration

By default the subsystem is turned off. To enable it you must perform two simple things:

• Add the XNJS.incarnationTweakerConfig property to the XNJS config file. The
value of the property must provide a location of the file with dynamic incarnation rules.

• Add some rules to the file configured above.

The following example shows how to set the configuration file to the value conf/incarna-
tionTweaker.xml:

...
<eng:Properties>

...
<eng:Property name="XNJS.incarnationTweakerConfig" value="conf/ ←↩

incarnationTweaker.xml"/>
...

</eng:Properties>
...

The contents of the rules configuration file must be created following this syntax:

<?xml version="1.0" encoding="UTF-8"?>
<tns:incarnationTweaker xmlns:tns="http://eu.unicore/xnjs/ ←↩

incarnationTweaker"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:beforeScript>
<!-- Here come BEFORE-SCRIPT rules-->

</tns:beforeScript>

<tns:afterScript>
<!-- And here AFTER-SCRIPT rules-->

</tns:afterScript>
</tns:incarnationTweaker>

9.11.3 Creating rules

Each rule must conform to the following syntax:

<tns:rule finishOnHit="false">
<tns:condition> <!-- Here comes the rule’s ←↩

condition --> </tns:condition>

<tns:action type="ACTION-TYPE">ACTION-DEFINITION</ ←↩
tns:action>

<!-- More actions may follow -->
</tns:rule>

UNICORE/X Manual 93

The rule’s attribute finishOnHit is optional, by default its value is false. When it is present
and set to true then this rule becomes the last rule invoked if it’s condition was met.

You can use as many actions as you want (assuming that at least one is present), actions are
invoked in the order of appearance.

SpEL and Groovy

Rule conditions are always boolean expressions of the Spring Expression Language (SpEL). As
SpEL can be also used in some types of actions it is the most fundamental tool to understand.

Full documentation is available here: http://static.springsource.org/spring/docs/3.0.0.M3/spring-
framework-reference/html/ch07.html

The most useful is the section 7.5: http://static.springsource.org/spring/docs/3.0.0.M3/spring-
framework-reference/html/ch07s05.html

Actions can be also coded using the Groovy language. You can find Groovy documentation at
Groovy’s web page: http://groovy.codehaus.org

Creating conditions

Rule conditions are always Spring Expression Language (SpEL) boolean expressions. To create
SpEL expressions, the access to the request-related variables must be provided. All variables
which are available for conditions are explained in Section 9.12.

Creating BEFORE-SCRIPT actions

There are the following action types which you can use:

• spel (the default which is used when type parameter is not specified) treats action value
as SpEL expression which is simply evaluated. This is useful for simple actions that should
modify value of one variable.

• script treats action value as a SpEL expression which is evaluated and which should return
a string. Evaluation is done using SpEL templating feature with \${ and } used as variable
delimiters (see section 7.5.13 in Spring documentation for details). The returned string is
used as a command line which is invoked. This action is extremely useful if you want to run
an external program with some arguments which are determined at runtime. Note that if you
want to cite some values that may contain spaces (to treat them as a single program argument)
you can put them between double quotes ". Also escaping characters with "\" works.

• groovy treats action value as a Groovy script. The script is simply invoked and can manip-
ulate the variables.

• groovy-file works similarly to the groovy action but the Groovy script is read from the
file given as the action value.

All actions have access to the same variables as conditions; see Section 9.12 for details.

http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07.html
http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07.html
http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07s05.html
http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07s05.html
http://groovy.codehaus.org

UNICORE/X Manual 94

Creating AFTER-SCRIPT actions

There are the following action types which you can use:

• script (the default which is used when type parameter is not specified) treats action value
as SpEL expression which is evaluated and which should return a string. Evaluation is done
using SpEL templating feature with \${ and } used as variable delimiters (see section 7.5.13
in Spring documentation for details). The returned string used as a command line which is
invoked. The invoked application gets as its standard input the automatically created TSI
script and is supposed to return (using standard output) the updated script which shall be used
instead. This action is extremely useful if you want to run an external program with some
arguments which are determined at runtime. Note that if you want to cite some values that
may contain spaces (to treat them as a single program argument) you can put them between
double quotes ". Also escaping characters with \ works.

• groovy treats action value as a Groovy script. The script has access to one special variable
input of type Reader. The original TSI script is available from this reader. The groovy
script is expected to print the updated TSI script which shall be used instead of the original
one.

• groovy-file works the same as the groovy action but the Groovy script is read from the
file given as the action value.

All actions have access to the same variables as conditions; see Section 9.11 for details.

9.11.4 Final notes

• The rules configuration file is automatically reread at runtime.

• If errors are detected in the rules configuration file upon server startup then the whole subsys-
tem is disabled. If errors are detected at runtime after an update then old version of rules is
continued to be used. Always check the log file!

• When rules are read the system tries to perform a dry run using an absolutely minimal exe-
cution context. This can detect some problems in your rules but mostly only in conditions.
Actions connected to conditions which are not met won’t be invoked. Always try to submit a
real request to trigger your new rules!

• Be careful when writing conditions: it is possible to change incarnation variables inside your
condition - such changes also influence incarnation.

• It is possible (from the version 6.4.2 up) to stop the job processing from the rule’s action.
To do so with the grovy or grovy-file action, throw the de.fzj.unicore.xnjs-
.ems.ExecutionException object from the script. In case of the script action, the
script must exit with the exit status equal to 10. The first 1024 bytes of its standard error are
used as the message which is included in the ExecutionException. This feature works both
for the BEFORE- and AFTER- SCRIPT actions. It is not possible to achieve this with the
spel action type.

UNICORE/X Manual 95

9.11.5 Complete examples and hints

Invoking a logging script for users who have the specialOne role. Note that the script is
invoked with two arguments (role name and client’s DN). As the latter argument may contain
spaces we surround it with quotation marks.

<?xml version="1.0" encoding="UTF-8"?>
<tns:incarnationTweaker xmlns:tns="http://eu.unicore/xnjs/ ←↩

incarnationTweaker"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:beforeScript>
<tns:rule>

<tns:condition>client.role.name == " ←↩
specialOne"</tns:condition>

<tns:action type="script">/opt/scripts/ ←↩
logSpecials.sh ${client.role.name} "${ ←↩
client.distinguishedName}"</tns:action>

</tns:rule>
</tns:beforeScript>

<tns:afterScript>
</tns:afterScript>

</tns:incarnationTweaker>

A more complex example. Let’s implement the following rules:

• The Application with a IDB name HEAVY-APP will always get 500MB of memory require-
ment if user requested less or nothing.

• All invocations of an executable /usr/bin/serial-app are made serial, i.e. the number of re-
quested nodes and CPUs are set to 1.

• For all requests a special script is called which can create a local account if needed along with
appropriate groups.

• There is also one AFTER-RULE. It invokes a groovy script which adds an additional line to
the TSI script just after the first line. The line is added for all invocations of the /usr/bin/serial-
app program.

The realization of the above logic can be written as follows:

<?xml version="1.0" encoding="UTF-8"?>
<tns:incarnationTweaker xmlns:tns="http://eu.unicore/xnjs/ ←↩

incarnationTweaker"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:beforeScript>
<tns:rule>

UNICORE/X Manual 96

<tns:condition>app.applicationName == " ←↩
HEAVY-APP" and (resources. ←↩
individualPhysicalMemory == null

or resources. ←↩
individualPhysicalMemory ←↩
< 500000000)</tns ←↩

:condition>
<tns:action>resources. ←↩

individualPhysicalMemory=500000000</tns ←↩
:action>

</tns:rule>
<tns:rule>

<tns:condition>app.executable == "/usr/bin/ ←↩
serial-app" and resources. ←↩
individualCPUCount != null</tns: ←↩
condition>

<tns:action>resources.individualCPUCount ←↩
=1</tns:action>

<tns:action>resources.totalResourceCount ←↩
=1</tns:action>

</tns:rule>
<tns:rule>

<tns:condition>true</tns:condition>
<tns:action type="script">/opt/ ←↩

addUserIfNotExists.sh ${client.xlogin. ←↩
userName} ${client.xlogin.encodedGroups ←↩
}</tns:action>

</tns:rule>
</tns:beforeScript>

<tns:afterScript>
<tns:rule>

<tns:condition>app.executable == "/usr/bin/ ←↩
serial-app"</tns:condition>

<tns:action type="groovy">
int i=0;
input.eachLine() { line ->
if(i==1) {

println("#TSI_MYFLAG=SERIAL");
println(line);

} else
println(line);

i++;
}

</tns:action>
</tns:rule>

</tns:afterScript>
</tns:incarnationTweaker>

UNICORE/X Manual 97

Remember that some characters are special in XML (e.g. < and &). You have to encode them
with XML entities (e.g. as < and > respectively) or put the whole text in a CDATA
section. A CDATA section starts with "<![CDATA[" and ends with "]]>". Example:

<tns:condition><!CDATA[resources.individualPhysicalMemory < ←↩
500000000]]></tns:condition>

Note that usually it is better to put Groovy scripts in a separate file. Assuming that you placed
the contents of the groovy AFTER-action above in a file called /opt/scripts/filter1.g then the
following AFTER-SCRIPT section is equivalent to the above one:

<tns:afterScript>
<tns:rule>

<tns:condition>app.executable == "/usr/bin/ ←↩
serial-app"</tns:condition>

<tns:action type="groovy-file">/opt/scripts ←↩
/filter1.g</tns:action>

</tns:rule>
</tns:afterScript>

It is possible to fail the job when a site-specific condition is met. E.g. with the groovy script:

<tns:afterScript>
<tns:rule>

<tns:condition>SOME - CONDITION</tns: ←↩
condition>

<tns:action type="groovy">
throw new de.fzj.unicore.xnjs.ems.ExecutionException(de.fzj.unicore ←↩

.xnjs.util.ErrorCode.ERR_EXECUTABLE_FORBIDDEN, "Description for ←↩
the user");

</tns:action>
</tns:rule>

</tns:afterScript>

To check your rules when you develop them, it might be wise to enable DEBUG logging on
incarnation tweaker facility. To do so add the following setting to the logging.properti-
es file:

log4j.logger.unicore.xnjs.IncarnationTweaker=DEBUG

You may also want to see how the final TSI script looks like. Most often TSI places it in a file
in job’s directory. However if the TSI you use doesn’t do so (e.g. in case of the NOBATCH
TSI) you can trigger logging of the TSI script on the XNJS side. There are two ways to do it.
You can enable DEBUG logging on the unicore.xnjs.tsi.TSIConnection facility:

log4j.logger.unicore.xnjs.tsi.TSIConnection=DEBUG

This solution is easy but it will produce also much more of additional information in you log
file. If you want to log TSI scripts only, you can use AFTER-SCRIPT rule as follows:

UNICORE/X Manual 98

<tns:afterScript>
<tns:rule>

<tns:condition>true</tns:condition>
<tns:action type="groovy">

org.apache.log4j.Logger log=org.apache.log4j.Logger.getLogger(" ←↩
unicore.xnjs.RequestLogging");

log.info("Dumping TSI request:");
input.eachLine() { line ->

println(line);
log.info(" " + line);

}
</tns:action>

</tns:rule>
</tns:afterScript>

The above rule logs all requests to the normal Unicore/X log file with the INFO level.

9.12 Incarnation tweaking context

Dynamic incarnation tweaker conditions and also all actions are provided with access to all
relevant data structures which are available at XNJS during incarnation.

The following variables are present:

• Client client provides access to authorization material: xlogin, roles, attributes etc.
NOTE: In general it makes sense to modify only the xlogin field in the Client object, the rest
are available only for information purposes. E.g. there is a queue field, but changing it in
the incarnation tweaker rules will have no effect on incarnation. Use the queue property
available from resources variable instead. You can read client’s queue to check what
queue settings were defined in attribute sources for the user. The source

• ApplicationInfo app provides access to information about application to be executed
(both abstract IDB name and actual target system executable). You can change the values here
to influence the incarnation. Remember that changing the user’s DN here won’t influence
authorization layer as authorization was already done for each request at this stage. The
source

• ResourcesWrapper resources provides access to resource requirements of the appli-
cation. The source

• ExecutionContext ec provides access to the application environment: interactive set-
ting, environment variables, working directory and stdin/out/err files. The source

• IncarnatedExecutionEnvironment execEnv provides access to the template which
is used to produce the final script. In most cases only manipulating pre- and post- commands
makes sense. The source

http://unicore.svn.sourceforge.net/viewvc/unicore/securityFramework/securityLibrary/trunk/src/main/java/eu/unicore/security/Client.java?view=markup
http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/tsi/ApplicationInfo.java?view=markup
http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/tsi/ApplicationInfo.java?view=markup
http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/incarnation/ResourcesWrapper.java?view=markup
http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/ems/ExecutionContext.java?view=markup
http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/jsdl/IncarnatedExecutionEnvironment.java?view=markup

UNICORE/X Manual 99

• IncarnationDataBase idb provides an (read only) access to the contents of the IDB.
The source

Each of the available variables has many properties that you can access. It is best to check
source code of the class to get a complete list of them. You can read property X if it has a
corresponding Java public Type getX() method. You can set a property Y if it has a
corresponding Java public void setY(Type value) method.

9.12.1 Simple example

Let’s consider the variable client. In the Client class you can find methods:

public String getDistinguishedName()

public void setDistinguishedName(String distinguishedName)

This means that the following SpEL condition is correct:

client.distinguishedName != null and client.distinguishedName == " ←↩
CN=Roger Zelazny,C=US"

Note that it is always a safe bet to check first if the value of a property is not null.

Moreover you can also set the value of the distinguished name in an action (this example is
correct for both SpEL and Groovy):

client.distinguishedName="CN=Roger Zelazny,C=US"

9.12.2 Advanced example

Often the interesting property is not available directly under one of the above enumerated vari-
ables. In case of the client variable one example may be the xlogin property holding the
list of available local accounts and groups and the ones which were selected among them.

Example of condition checking the local user id:

client.xlogin.userName != null and client.xlogin.userName == "roger ←↩
"

Setting can also be done in an analogous way. However always pay attention to the fact that not
always setting a value will succeed. E.g. for Xlogin it is possible to set a selected xlogin only
to one of those defined as available (see contents if the respective setSelectedLogin()
method). Therefore to change local login to a fixed value it is best to just override the whole
XLogin object like this (SpEL):

client.xlogin=new eu.unicore.security.Xlogin(new String[] {"roger ←↩
"}, new String{"users"})

http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/jsdl/IncarnationDataBase.java?view=markup

UNICORE/X Manual 100

9.12.3 Resources variable

As it is bit difficult to manipulate the resources requirements object which is natively used by
UNICORE, it is wrapped to provide an easier to use interface. The only exposed properties are
those requirements which are actually used by UNICORE when the TSI script is created.

You can access the low level (and complicated) original resources object through the resou-
rces.allResources property.

10 The UNICORE metadata service

UNICORE supports metadata management on a per-storage basis. This means, each storage
instance (for example, the user’s home, or a job working directory) has its own metadata man-
agement service instance.

Metadata management is separated into two parts: a front end (which is a web service) and a
back end.

The front end service allows the user to manipulate and query metadata, as well as manually
trigger the metadata extraction process. The back end is the actual implementation of the meta-
data management, which is pluggable and can be exchanged by custom implementations. The
default implementation has the following properties

• Apache Lucene for indexing,

• Apache Tika for extracting metadata,

• metadata is stored as files directly on the storage resource, in files with a special ".metadata"
suffix

• the index files are stored on the UNICORE/X server, in a configurable directory

10.1 Enabling the metadata service

First, UNICORE’s service configuration file <CONF>/wsrflite.xml needs to be edited and the
following service definition added in the <services> section:

<!-- enable the metadata management service -->
<service name="MetadataManagement" wsrf="true" persistent="true">
<interface class="de.fzj.unicore.uas.MetadataManagement"/>
<implementation class="de.fzj.unicore.uas.metadata. ←↩

MetadataManagementHomeImpl"/>
</service>

You will also need to define which implementation should be used. This is done via properties,
which can be defined either in <CONF>/wsrflite.xml or <CONF>/uas.config.

In uas.config, set:

UNICORE/X Manual 101

#
Metadata manager settings
#

coreServices.metadata.managerClass=eu.unicore.uas.metadata. ←↩
LuceneMetadataManager

#
use Tika for extracting metadata
(if you do not want this, remove this property)
#
coreServices.metadata.parserClass=org.apache.tika.parser. ←↩

AutoDetectParser

#
Lucene index directory:
#
Configure a directory on the UNICORE/X machine where index
files should be placed
#
coreServices.metadata.luceneDirectory=/tmp/data/luceneIndexFiles/

10.2 Controlling metadata extraction

If a file named .unicore_metadata_control is found in the base directory (i.e. where
the crawler starts its crawling process), it is evaluated to decide which files should be included
or excluded in the metadata extraction process.

By default, all files are included in the extraction process, except those matching a fixed set of
patterns (".svn", and the UNICORE metadata and control files themselves).

The file format is a standard "key=value" properties file. Currently, the following keys are
understood

• exclude a comma-separated list of string patterns of filenames to exclude

• include a comma-separated list of string patterns of filenames to include

• useDefaultExcludes if set to "false", the predefined exclude list will NOT be used

The include/exclude patterns may include wildcards ? and *.

Examples:

To only include pdf and jpg files, you would use

include=*.pdf,*.jpg

UNICORE/X Manual 102

To exclude all doc and ppt files,

exclude=*.doc,*.ppt

To include all pdf files except those whose name starts with 2011,

include=*.pdf
exclude=2011*.pdf

11 Authorization back-end (PDP) guide

The authorization process in UNICORE/X requires that nearly all operations must be authorized
prior to execution (exceptions may be safely ignored).

UNICORE allows to choose which authorization back-end is used. The module which is re-
sponsible for this operation is called Policy Decision Point (PDP). You can choose one among
already available PDP modules or even develop your own engine.

Local PDPs use a set of policy files to reach an authorisation decision, remote PDPs query a
remote service.

Local UNICORE PDPs use the XACML language to express the authorization policy. The
XACML policy language is introduced in the Guide to XACML security policies Section 12.
You can also review this guide if you want to have a deeper understanding of the authorization
process.

11.1 Basic configuration

Note
The full list of options related to PDP is available here: Section 2.8.2.

There are three options which are relevant to all PDPs:

• use.security.accesscontrol (values: true or false) This boolean property can
be used to completely turn off the authorization. This guide makes sense only if this option is
set to true. Except for test scenarios this should never be switched off, otherwise every user
can in principle access all resources on the server.

• use.security.accesscontrol.pdp (value: full class name) This property is used to
choose which PDP module is being used.

• use.security.accesscontrol.pdpConfig (value: file path) This property pro-
vides a location of a configuration file of the selected PDP.

UNICORE/X Manual 103

11.2 Available PDP modules

11.2.1 XACML 2.0 PDP

The implementation class of this module is: eu.unicore.uas.pdp.local.LocalHe-
rasafPDP so to enable this module use the following configuration in uas.config:

use.security.accesscontrol.pdpConfig=<CONFIG_DIR>/xacml2.conf
use.security.accesscontrol.pdp=eu.unicore.uas.pdp.local. ←↩

LocalHerasafPDP

The configuration file content is very simplistic as it is enough to define only few options:

The directory where XACML 2.0 policy files are stored
localpdp.directory=conf/xacml2Policies

Wildcard expression to select actual policy files from the ←↩
directory defined above

localpdp.filesWildcard=*.xml

Combining algorithm for the policies. You can use the full XACML ←↩
id or its last part.

localpdp.combiningAlg=first-applicable

The policies from the localpdp.directory are always evaluated in alphabetical order, so
it is good to name files with a number. By default the first-applicable combining algorithm is
used and UNICORE policy is stored in two files: 01coreServices.xml and 99finalDeny.xml. The
first file contains the default access policy, the latter a single fall through deny rule. Therefore
you can put your own policies using an additional file in file named e.g. 50localRules.xml.

The policies are reloaded whenever you change (or touch) the configuration file of this PDP,
e.g. like this:

touch conf/xacml2.conf

11.2.2 XACML 1.x PDP

The implementation class of this module is: eu.unicore.uas.pdp.localsun.Loca-
lSunPDP so to enable this module use the following configuration in uas.config:

use.security.accesscontrol.pdpConfig=conf/xacml.config
use.security.accesscontrol.pdp=eu.unicore.uas.pdp.localsun. ←↩

LocalSunPDP

This module is the one that was the only available option in UNICORE prior to the release 6.4.0

The rules are contained in one or more policy files as listed in the xacml.config configuration
file. However note that in case of this legacy implementation it mostly doesn’t make sense to

UNICORE/X Manual 104

use more then one file as it not possible to control the combining algorithm (which would be
only-one-applicable). Therefore the configuration file is rather absolutely constant:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://sunxacml.sourceforge.net/schema/config-0.3"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
defaultPDP="pdp" defaultAttributeFactory="attr"
defaultCombiningAlgFactory="comb" defaultFunctionFactory=" ←↩

func">
<pdp name="pdp">

<attributeFinderModule class="com.sun.xacml.finder.impl. ←↩
CurrentEnvModule"/>

<attributeFinderModule class="com.sun.xacml.finder.impl. ←↩
SelectorModule"/>

<policyFinderModule class="com.sun.xacml.finder.impl. ←↩
FilePolicyModule">

<list>
<string>conf/security_policy.xml</string>

</list>
</policyFinderModule>

</pdp>
<attributeFactory name="attr" useStandardDatatypes="true"/>
<combiningAlgFactory name="comb" useStandardAlgorithms="true"/>
<functionFactory name="func" useStandardFunctions="true">

</functionFactory>
</config>

In case you modified the policy file(s), you can force a reload into the running server by
"touch"ing the xacml.conf configuration file. For example, under Unix you can execute

touch conf/xacml.conf

Opening the file in an editor and saving it will also do the trick.

11.2.3 Remote SAML/XACML 2.0 PDP with Argus PAP

Note
Releases 6.5.x of UNICORE offered an other Argus PDP implementation which allows for off-
sourcing authorisation decision to a remote Argus PDP daemon. While this implementation
was working, in the Argus policy language it is impossible to express any rules using the
resource owner. Therefore creation of a functional policy for UNICORE with Argus is barely
possible and this implementation was dropped in UNICORE 6.6.0.

This PDP allows for mixing local policies with policies downloaded from a remote server using
SAML protocol for XACML policy query. This protocol is implemented by Argus PAP server

UNICORE/X Manual 105

Argus PAP. Please note that under the name Argus there is a whole portfolio of services, but for
purpose of UNICORE integration Argus PAP is the only one required.

Usage of Argus PAP together with UNICORE policies is useful as Argus PAP allows for a quite
easy editing of authorization policies with its Simplified Policy Language. It is less powerful
then XACML but allows for performing all the typical tasks like banning selected users or VOs.
Also if Argus is used to provide authorization rules for other middleware installed at the site (as
gLite or ARC), it might be desirable to have a single place to store site-wide policies.

Unfortunately as Argus policy can not fully take over the UNICORE authorization (see the
above note for details), the Argus policy must be combined with the classic UNICORE XACML
2 policy, stored locally.

The implementation class of this module is: eu.unicore.uas.pdp.argus.ArgusPDP
so to enable this module use the following configuration in uas.config:

use.security.accesscontrol.pdpConfig=<CONFIG_DIR>/argus.config
use.security.accesscontrol.pdp=eu.unicore.uas.pdp.argus.ArgusPAP

The PDP configuration is very simple as it is only required to provide the Argus endpoint and
query timeout (in milliseconds).

The directory where XACML 2.0 policy files are stored
(both local and downloaded from Argus PAP)
localpdp.directory=conf/xacml2PoliciesWithArgus

Wildcard expression to select actual policy files from the ←↩
directory defined above

localpdp.filesWildcard=*.xml

Combining algorithm for the policies. You can use the full XACML ←↩
id or its last part.

This algorithm will be used to combine the Argus and local ←↩
policies.

localpdp.combiningAlg=first-applicable

Address of the Argus PAP server. Typically only the hostname ←↩
needs to be changed,

rarely the port.
argus.pap.serverAddress=https://localhost:8150/pap/services/ ←↩

ProvisioningService

What is the name of a file to which a downloaded Argus policy is ←↩
saved.

Note that name of this file is very important as it determines ←↩
policies evaluation order.

Here the Argus policy will be evaluated first.
argus.pap.policysetFilename=00argus.xml

How often (in ms) the Argus PAP should be queried for a new ←↩
policy

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework

UNICORE/X Manual 106

argus.pap.queryInterval=3600000

What is the Argus query timeout in ms.
argus.pap.queryTimeout=15000

If Argus PAP is unavailable for that long (in ms) the PDP will ←↩
black all users

assuming that the policy is outdated. Use negative value to ←↩
disable this feature.

argus.pap.deny.timeout=36000000

You can use both http and https addresses. In the latter case server’s certificate is used to make
the connection. Note that all localpdp.* settings are the same as in case of the default, local
XACML 2.0 PDP.

Using the available configuration options, it is possible to merge Argus policies in many differ-
ent ways. Here we present a simple pattern, which is good for cases when Argus is used to ban
users (it was also applied to the example above):

• Argus policy should be saved to a file which will be evaluated first, e.g. 00argus.xml

• Default XACML 2.0 policies of UNICORE local PDP should be added to the directory, with-
out any changes.

• The policy combining algorithm should be first-applicable

• Argus PAP policies should include a series of deny statements (see Argus documentation for
details) and no final permit (or deny) fall-trough rule.

Then Argus policy will be evaluated first. If any banning rule matches the user then it will be
denied by the Argus policy. Otherwise it will be non-applicable and the local, default UNICORE
policy will be evaluated. Note that if it is problematic for other (non-UNICORE) services using
Argus, to remove the final fall-through permit or deny rule, then you can add such rule, but with
a proper resource statement so it will be applicable only for non-UNICORE components.

Of course it is also possible to creatively design other patterns, when for instance Argus policy
is evaluated as a second one.

12 Guide to XACML security policies

XACML authorization policies need not to be modified on a day-to-day basis when running
the UNICORE server. The most common tasks as banning or allowing users can be performed
very easily using UNICORE Attribute Sources like XUUDB or UVOS. This guide is intended
for advanced administrators who want to change the non-standard authorization process and for
developers who want to provide authorization policies for services they create.

UNICORE/X Manual 107

The XACML standard is a powerful way to express fine grained access control. The idea is to
have XML policies describing how and by whom actions on resources can be performed. A
very readable introduction into XACML can be found with Sun’s XACML implementation.

There are several versions of XACML policy language. Currently UNICORE supports both 1.x
and 2.0 versions. Those are quite similar and use same concepts, however note that syntax is a
bit different. In this guide we provide examples using XACML 2.0. The same examples in the
legacy XACML 1.1 format are available in xref:use_policies-11.

UNICORE allows to choose one of several authorization back-end implementations called Pol-
icy Decision Points (PDP). Among others you can decide whether to use local XACML 1.x
policies or local XACML 2.0 policies. The authorization section Section 11 shows how to
choose and configure each of the available PDPs.

In UNICORE terms XACML is used as follows. Before each operation (i.e. execution of a web
service call), an XACML request is generated, which currently includes the following attributes:

XACML attribute name XACML
category

XACML
type

Description

urn:oasis:names:t-
c:xacml:1.0:resou-
rce:resource-id

Resource AnyURI WS service name

urn:unicore:wsres-
ource

Resource String Identifier of the WSRF
resource instance (if any).

owner Resource X.500
name

The name of the VO
resource owner.

voMembership-VONA-
ME

Resource String For each VO the accessed
resource is a member, there
is such attribute with the
VONAME set to the VO,
and with the value
specifying allowed access
type, using the same action
categories as are used for
the actionType
attribute.

actionType Action String Action type or category.
Currently read for
read-only operation and
modify for others.

urn:oasis:names:t-
c:xacml:1.0:actio-
n:action-id

Action String WS operation name.

urn:oasis:names:t-
c:xacml:1.0:subje-
ct:subject-id

Subject X.500
name

User’s DN.

role Subject String The user’s role.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://sunxacml.sourceforge.net/guide.html#xacml

UNICORE/X Manual 108

XACML attribute name XACML
category

XACML
type

Description

consignor Subject X.500
name

Client’s (consignor’s) DN.

vo Subject Strings Bag with all VOs the user is
member of (if any).

selectedVo Subject String The effective, selected VO
(if any).

Note that the above list is valid for the default local XACML 2 and legacy XACML 1.x PDPs.
For others the attributes might be different - see the respective documentation.

The request is processed by the server and checked against a (set of) policies. Policies contain
rules that can either deny or permit a request, using a powerful set of functions.

12.1 Policy sets and combining of results

Typically, the authorization policy is stored in one file. However as this file can get long and
unmanageable sometimes it is better to split it into several ones. This additionally allows to
easily plug additional policies to the existing authorization process. In UNICORE, this feature
is implemented in the XAML 2.0 PDP.

When policies are split in multiple files each of those files must contain (at least one) a separate
policy. A PDP must somehow combine result of evaluation of multiple policies. This is done
by so-called policy combining algorithm. The following algorithms are available, the part after
last colon describes behaviour of each:

urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered- ←↩
permit-overrides

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit- ←↩
overrides

urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered- ←↩
deny-overrides

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny- ←↩
overrides

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first- ←↩
applicable

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:only-one- ←↩
applicable

Each policy file can contain one or more rules, so it is important to understand how possible
conflicts are resolved. The so-called combining algorithm for the rules in a single policy file is
specified in the top-level Policy element.

The XACML (from version 1.1 onwards) specification defines six algorithms: permit-overrides,
deny-overrides, first-applicable, only-one-applicable, ordered-permit-overrides and ordered-deny-
overrides. For example, to specify that the first matching rule in the policy file is used to make
the decision, the Policy element must contain the following "RuleCombiningAlgId" attribute:

UNICORE/X Manual 109

<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicyId="ExamplePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule- ←↩

combining-algorithm:first-applicable">

The full identifiers of the combining algorithms are as follows:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny- ←↩
overrides

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit- ←↩
overrides

urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered-deny- ←↩
overrides

urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered- ←↩
permit-overrides

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first- ←↩
applicable

12.2 Role-based access to services

A common use case is to allow/permit access to a certain service based on a user’s role This can
be achieved with the following XACML rule, which describes that a user with role "admin" is
given access to all services.

<Rule RuleId="Permit:Admin" Effect="Permit">
<Description> Role "admin" may do anything. </Description>
<Target />
<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

string-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:string-one-and-only">
<SubjectAttributeDesignator

DataType="http://www.w3.org/2001/XMLSchema# ←↩
string" AttributeId="role" />

</Apply>
<AttributeValue DataType="http://www.w3.org/2001/ ←↩

XMLSchema#string">admin</AttributeValue>
</Apply>

</Condition>
</Rule>

If the access should be limited to a certain service, the Target element must contain a service
identifier, as follows. In this example, access to the DataService is granted to those who have
the data-access role.

UNICORE/X Manual 110

<Rule RuleId="rule2" Effect="Permit">
<Description>Allow users with role "data-access" access to ←↩

the DataService</Description>
<Target>
<Resources>

<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0: ←↩

function:anyURI-equal">
<AttributeValue DataType="http://www.w3.org/2001/ ←↩

XMLSchema#anyURI">DataService</AttributeValue>
<ResourceAttributeDesignator AttributeId="urn:oasis ←↩

:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www. ←↩

w3.org/2001/ ←↩
XMLSchema#anyURI" ←↩
MustBePresent=" ←↩
true" />

</ResourceMatch>
</Resource>

</Resources>
</Target>

<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

string-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:string-one-and-only">
<SubjectAttributeDesignator DataType="http://www.w3. ←↩

org/2001/XMLSchema#string" AttributeId="role" />
</Apply>

<AttributeValue DataType="http://www.w3.org/2001/ ←↩
XMLSchema#string">data-access</AttributeValue>

</Apply>
</Condition>

By using the <Action> tag in policies, web service access can be controlled on the method level.
In principle, XACML supports even control based on the content of some XML document, such
as the incoming SOAP request. However this is not yet used in UNICORE/X.

12.3 Limiting access to services to the service instance owner

Most service instances (corresponding e.g. to jobs, or files) should only ever be accessed by
their owner. This rule is expressed as follows:

<Rule RuleId="Permit:AnyResource_for_its_owner" Effect="Permit">
<Description> Access to any resource is granted for its ←↩

owner </Description>
<Target />

UNICORE/X Manual 111

<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

x500Name-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:x500Name-one-and-only">
<SubjectAttributeDesignator AttributeId="urn:oasis: ←↩

names:tc:xacml:1.0:subject:subject-id"
DataType="urn:oasis:names ←↩

:tc:xacml:1.0:data- ←↩
type:x500Name"

MustBePresent="true" />
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:x500Name-one-and-only">
<ResourceAttributeDesignator
AttributeId="owner" DataType="urn:oasis:names:tc: ←↩

xacml:1.0:data-type:x500Name"
MustBePresent="true" />

</Apply>
</Apply>

</Condition>
</Rule>

12.4 More details on XACML use in UNICORE/X

To get more detailed information about XACML policies (e.g. to get the list of all available
functions etc) consult the XACML specification. To get more information on XACML use in
UNICORE/X it is good to set the logging level of security messages to DEBUG:

log4j.logger.unicore.security=DEBUG

You will be able to read what input is given to the XACML engine and what is the detailed
answer. Alternatively, ask on the support mailing list.

12.5 Policy examples in XACML 1.1 syntax

This section contains the same examples as are contained in the previous section, but using
XACML 1.x syntax. For more detailed discussion of each example please refer to the previous
section.

Policy header with first-applicable combining algorithm.

<Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicyId="ExamplePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule- ←↩

combining-algorithm:first-applicable">

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
mailto:unicore-support@lists.sf.net

UNICORE/X Manual 112

A user with role "admin" is given access to all service.

<Rule RuleId="rule1" Effect="Permit">
<Description>Allow users with role "admin" access to any service</ ←↩

Description>
<Target>
<Subjects>
<AnySubject/>

</Subjects>
<Resources>
<AnyResource/>

</Resources>
<Actions>
<AnyAction/>

</Actions>
</Target>

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩
string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string- ←↩
one-and-only">

<SubjectAttributeDesignator DataType="http://www.w3.org/2001/ ←↩
XMLSchema#string" AttributeId="role" />

</Apply>
<!-- here is the role value -->
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema# ←↩

string">admin</AttributeValue>
</Condition>
/Rule>

Defining which resource access is defined with the Target element:

<Rule RuleId="rule2" Effect="Permit">
<Description>Allow users with role "data-access" access to the ←↩

DataService</Description>
<Target>
<Subjects>
<AnySubject/>

</Subjects>
<Resources>
<!-- specify the data service -->
<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0: ←↩

function:anyURI-equal">
<AttributeValue DataType="http://www.w3.org/2001/ ←↩

XMLSchema#anyURI">DataService</AttributeValue>
<ResourceAttributeDesignator DataType="http://www.w3.org ←↩

/2001/XMLSchema#anyURI"
AttributeId="urn:oasis:names ←↩

:tc:xacml:1.0:resource: ←↩
resource-id"/>

UNICORE/X Manual 113

</ResourceMatch>
</Resource>
</Resources>
<Actions>
<AnyAction/>

</Actions>
</Target>

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩
string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string- ←↩
one-and-only">

<SubjectAttributeDesignator DataType="http://www.w3.org/2001/ ←↩
XMLSchema#string" AttributeId="role" />

</Apply>
<!-- here is the role value -->
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema# ←↩

string">data-access</AttributeValue>
</Condition>
/Rule>

Allowing access for the resource owner:

<Rule RuleId="PermitJobManagementServiceForOwner" Effect="Permit">
<Description>testing</Description>
<Target>

<Subjects> <AnySubject/> </Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0: ←↩

function:anyURI-equal">
<AttributeValue DataType="http://www.w3.org/2001/ ←↩

XMLSchema#anyURI">JobManagementService</ ←↩
AttributeValue>

<ResourceAttributeDesignator AttributeId="urn:oasis:names ←↩
:tc:xacml:1.0:resource:resource-id" DataType="http:// ←↩
www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true ←↩
"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions> <AnyAction/> </Actions>

</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

x500Name-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

x500Name-one-and-only">
<SubjectAttributeDesignator AttributeId="urn:oasis:names:tc: ←↩

xacml:1.0:subject:subject-id" DataType="urn:oasis:names: ←↩
tc:xacml:1.0:data-type:x500Name" MustBePresent="true"/>

</Apply>

UNICORE/X Manual 114

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩
x500Name-one-and-only">

<ResourceAttributeDesignator AttributeId="owner" DataType=" ←↩
urn:oasis:names:tc:xacml:1.0:data-type:x500Name" ←↩
MustBePresent="true"/>

</Apply>
</Condition>

</Rule>

13 Proxy certificate support

Note
First, a warning: proxies are not really supported in UNICORE, except for a very limited set
of usage scenarios. Many "normal" things will not work with proxy certificates. Thus, only use
this feature if really strictly necessary. No feature in UNICORE requires proxies

Proxies are supported in two ways in UNICORE

• transport-layer security and authentication via the UNICORE gateway

• enable usage of GSI based software such as GridFTP

This document provides information and configuration snippets for the second usage scenario.
Information about the first case can be found on the SourceForge Wiki page EnableProxySup-
port.

13.1 TLS proxy support

Using proxies for TLS means that the proxy certificate is used by the client to establish the SSL
connection. You must use a gateway with the appropriate configuration for this to work. On the
UNICORE/X side it is necessary to set a property in uas.config :

uas.authoriser.proxysupport=true

13.2 GSI tools support

Your UNICORE client needs to create and send the proxy. Both UCC and URC support this,
please consult your client documentation for the details.

https://sourceforge.net/apps/mediawiki/unicore/index.php?title=EnableProxySupport
https://sourceforge.net/apps/mediawiki/unicore/index.php?title=EnableProxySupport

UNICORE/X Manual 115

13.2.1 Storing the proxy in the job directory

First, you need to enable a handler on the web services engine. In the unicorex/conf/wsr-
flite.xml, add a handler definition on the target system service:

<service name="TargetSystemService" wsrf="true" persistent="true ←↩
">

...
<!-- additional proxy extraction handler definition -->
<handler type="in" class="de.fzj.unicore.uas.security. ←↩

ProxyCertInHandler"/>
</service>

The handler can also be added for all services like this:

<!-- add proxy extract handler on all services.
This needs to be done *before* the service definitions -->

<globalHandler type="in" class="de.fzj.unicore.uas.security. ←↩
ProxyCertInHandler"/>

<service name="...">
</service>

...

Secondly, you need to modify the XNJS configuration to enable a component that stores the
proxy in the format expected by GSI (no encryption, PEM format).

So open the XNJS config file (e.g. conf/xnjs.xml) and edit the ProcessingChain section.

<eng:ProcessingChain actionType="JSDL" jobDescriptionType="{ ←↩
http://schemas.ggf.org/jsdl/2005/11/jsdl}JobDefinition">

<!-- stores proxy to uspace -->
<eng:Processor>de.fzj.unicore.uas.xnjs. ←↩

ProxyCertToUspaceProcessor</eng:Processor>
<!-- usual entries -->
<eng:Processor>de.fzj.unicore.xnjs.jsdl.JSDLProcessor</eng: ←↩

Processor>
<eng:Processor>de.fzj.unicore.xnjs.ems.processors.UsageLogger</ ←↩

eng:Processor>
</eng:ProcessingChain>

13.2.2 Configuring gridftp

Using GridFTP basically works out of the box, if the client sends a proxy and you have Globus
installed on your TSI login node. However it can be customised using two settings in the XNJS
config file ("xnjs.xml" or "xnjs_legacy.xml").

UNICORE/X Manual 116

<!-- name / path of the executable -->
<eng:Property name="globus-url-copy" value="/usr/local/bin/ ←↩

globus-url-copy"/>
<!-- additional parameters for globus-url-copy -->
<eng:Property name="globus-url-copy.parameters" value=""/>

14 XtreemFS support

XtreemFS is a distributed filesystem (see http://www.xtreemfs.org).

XtreemFS can be mounted locally at more than one UNICORE site, making it desirable to have
an optimized way of moving files used in UNICORE jobs into and out of XtreemFS.

To achieve this, UNICORE supports a special URL scheme "xtreemfs://" for data staging (i.e.
moving data into the job directory prior to execution, and moveing data out of the job directory
after execution).

As an example, in their jobs users can write (using a UCC example):

{

Imports:
[
{ From: "xtreemfs://CN=test/test.txt", To: "infile", },

]

}

to have a file staged in from XtreemFS.

14.1 Site setup

At a site that wishes to support XtreemFS, two ways of providing access are possible. If
XtreemFS is mounted locally and accessible to the UNICORE TSI, it is required to define
the mount point in CONF/uas.config :

xtreemfs.mountpoint=...

In this case, data will simply be copied by the TSI.

If XtreemFS is not mounted locally, it is possible to define the URL of a UNICORE Storage
which provides access to XtreemFS

xtreemfs.url=https://...

In this case, data will be moved using the usual UNICORE file transfer mechanism.

http://www.xtreemfs.org

UNICORE/X Manual 117

15 SCP support

UNICORE supports file staging in/out using SCP, as defined in the Open Grid Forum’s "HPC
File staging profile" (GFD.135).

In the JSDL job description, an scp stage in is specified as follows:

<?xml version="1.0"?>
<p:JobDefinition xmlns:p="http://schemas.ggf.org/jsdl/2005/11/jsdl"

xmlns:jsdl-posix="http://schemas.ggf.org/jsdl ←↩
/2005/11/jsdl-posix">

<p:JobDescription>
<p:Application>
<jsdl-posix:POSIXApplication>
<jsdl-posix:Executable>/bin/ls</jsdl-posix:Executable>
<jsdl-posix:Argument>-l</jsdl-posix:Argument>

</jsdl-posix:POSIXApplication>
</p:Application>
<p:DataStaging>
<p:FileName>input</p:FileName>
<p:CreationFlag>overwrite</p:CreationFlag>
<p:Source>
<p:URI>scp://HOST:PORT:filepath</p:URI>

</p:Source>
<ac:Credential xmlns:ac="http://schemas.ogf.org/hpcp/2007/11/ ←↩

ac">
<wsse:UsernameToken xmlns:wsse="http://docs.oasis-open.org/ ←↩

wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd ←↩
">

<wsse:Username>***</wsse:Username>
<wsse:Password>***</wsse:Password>

</wsse:UsernameToken>
</ac:Credential>

</p:DataStaging>
</p:JobDescription>

</p:JobDefinition>

As you can see, username and password required to invoke SCP are embedded into the job
description, and the URL schema is "scp://"

15.1 Site setup

At a site that wishes to support SCP, the UNICORE server needs to be configured with the path
of an scp wrapper script that can pass the password to scp, if necessary.

If not already pre-configured during installation, you can configure this path manually in the
XNJS config file (or simpler in the IDB)

UNICORE/X Manual 118

<!-- scp wrapper script -->
<eng:Property name="scp-wrapper.sh" value="/path/to/scp-wrapper ←↩

.sh"/>

15.2 SCP wrapper script

The TSI 6.4.2 and later includes a script written in Perl (scp-wrapper.pl), depending on how you
installed UNICORE it is probably already pre-configured for you.

An alternative scp wrapper script written in TCL is provided in the "extras" folder of the core
server bundle, for your convenience it is reproduced here. It requires TCL and Expect. You
may need to modify the first line depending on how Expect is installed on your system.

#!/usr/bin/expect -f

this is a wrapper around scp
#
it automates the interaction required to enter the password.
#
Prerequisites:
The TCL Expect tool is used.
#
Arguments:
1: source, 2: target, 3: password

set source [lindex $argv 0]
set target [lindex $argv 1]
set password [lindex $argv 2]
set timeout 10

start the scp process
spawn scp "$source" "$target"

handle the interaction
expect {

"passphrase" {
send "$password\r"
exp_continue

} "password:" {
send "$password\r"
exp_continue

} "yes/no)?" {
send "yes\r"
exp_continue

} timeout {
puts "Timeout."
exit

} -re "." {

UNICORE/X Manual 119

exp_continue
} eof {
exit

}
}

Similar scripts may also be written in other scripting languages such as Perl or Python.

16 Mail support

UNICORE supports file staging out using email. An existing SMPT server or some other work-
ing email mechanism is required for this to work.

In the JSDL job description, a stage out using email is specified as follows:

<?xml version="1.0"?>
<p:JobDefinition xmlns:p="http://schemas.ggf.org/jsdl/2005/11/jsdl"

xmlns:jsdl-posix="http://schemas.ggf.org/jsdl ←↩
/2005/11/jsdl-posix">

<p:JobDescription>

<!-- example stage-out using email -->
<p:DataStaging>
<p:FileName>stdout</p:FileName>
<p:Target>
<p:URI>mailto:user@domain?subject=Your output is ready</p: ←↩

URI>
</p:Target>

</p:DataStaging>

</p:JobDescription>
</p:JobDefinition>

The "mailto" URI consists of the email address and an OPTIONAL user-defined subject.

16.1 Site setup

Without any configuration, UNICORE will use JavaMail and attempt to use an SMTP server
running on the UNICORE/X host, expected to be listening on port 25 (the default SMTP port).

To change this behaviour, the following properties can be defined (in the IDB or XNJS config
file). See the next section if you do not want to use an SMTP server directly.

• mail.smtp.host: the host of the SMTP server

• mail.smtp.port : the port of the SMTP server

UNICORE/X Manual 120

• mail.smtp.user : the user name of the mail account which sends email

• mail.smtp.password : the password of the mail account which sends email

• mail.smtp.ssl : to use SSL, see the XNJS/TSI SSL setup page on how to setup SSL

16.2 Email wrapper script

As an alternative to using JavaMail, the site admin can define a script which is executed (as the
current grid user) to send email.

<!-- mailto wrapper script, defining this will disable JavaMail ←↩
-->

<eng:Property name="mail-wrapper.sh" value="/path/to/mail- ←↩
wrapper.sh"/>

This is expected to takes three parameters: email address, file to send and a subject. An example
invocation is

mail-wrapper.sh "user@somehost.eu" "outfile" "Result file from your ←↩
job"

17 EMIR support

The EMI Registry (EMIR) is a new product developed in the EMI project. It is a service registry
and can be used from different middlewares such as ARC. UNICORE/X supports publishing
service information to EMIR (in addition to the usual UNICORE registries).

To enable publishing to EMIR, the UNICORE/X configuration file CONF/uas.config needs
to be adapted with the following entries.

enable publishing to EMIR
emiregistry.publishing.enable=true

set the publishing interval (seconds)
emiregistry.publishing.interval=120

initialise EMIR publishing at server start
uas.onstartup.99=eu.emi.emir.unicore.PublishingOnStartup

URL of the EMIR server
emiregistry.server.url=http(s)://<hostname>:<port>

UNICORE/X Manual 121

18 The CIP (Infoprovider)

The CIP is a component that provides information in GLUE2 format about a UNICORE/X
server to interested clients or other services such as CIS or even non-UNICORE components
such as BDII.

It consists of two parts: the basic infoprovider maintains information and generates the required
GLUE2 document and a web service that can be queried by clients or other services.

To setup CIP, a startup entry in the main config file CONF/uas.config is required:

add CIP setup to startup tasks, ’NNN’ should be a high-enough ←↩
integer

container.onstartup.NNN=de.fzj.unicore.cisprovider.impl. ←↩
InitOnStartup

There are a number of configuration parameters that control how CIP is set up.

Property name Type Default
value /
mandatory

Description

coreServices.ci-
p.dataPath

filesystem path conf/si-
te-info-
.json

Path to the JSON file with
constant information about
the service.

coreServices.ci-
p.glue2.generate

[true, false] false Whether to auto-generate a
GLUE2 document

coreServices.ci-
p.glue2.refresh-
Period

integer number 3600 Refresh period (in seconds)
for the GLUE2. If <0, no
refresh will be done

coreServices.ci-
p.glue2.targetP-
ath

string /var/ru-
n/unico-
re/unic-
orex_gl-
ue2.xml

Path for the auto-generated
GLUE2 document

coreServices.ci-
p.publish

[true, false] true Controls whether CIP
service endpoint
information should be
published to registry.

coreServices.ci-
p.site.cpus

integer number 1 Number of CPUs the site
provides

coreServices.ci-
p.site.descript-
ion

string Linux
server

Site description

coreServices.ci-
p.site.latitude

floating point
number

50.94545 Geographical latitude of the
site

coreServices.ci-
p.site.longitude

floating point
number

6.377907 Geographical longitude of
the site

UNICORE/X Manual 122

Property name Type Default
value /
mandatory

Description

coreServices.ci-
p.site.name

string - Site name

coreServices.ci-
p.site.url

string - Site web URL

19 The Application service (GridBean service)

The Application service (aka GridBean service) provides application specific plugins for the
UNICORE Rich client (URC). On the server side, it is good practice to provide such an Appli-
cation plugin for every configured application whenever applicable.

The availability of the service is advertised through the Registry, if an appropriate "onstartup"
setting is used:

container.onstartup.11=com.intel.gpe.gridbeans. ←↩
PublishGridBeanService

A second property allows to set the directory where GridBean *.jar files are located on the
server. These files will be served by the GridBean service.

#
GridBeanService: directory on the UNICORE/X machine where the
server looks for gridbeans
#
coreServices.gridbean.directory=/usr/local/unicore/gridbeans

Only files ending with ".jar" will be served, it is customary to use the suffix "GridBean.jar"

	Getting started
	Prerequisites
	Installation

	Configuration of UNICORE/X
	Overview of the main configuration options
	Config file overview
	Settings for the UNICORE/X process (e.g. memory)
	Config file formats
	UNICORE/X container configuration overview
	Integration of UNICORE/X into a UNICORE infrastructure
	Startup code
	Security
	Configuring the XNJS and TSI
	Configuring storages on TargetSystem instances
	Configuring the StorageFactory service
	HTTP proxy, timeout and web server settings

	Administration
	Controlling UNICORE/X memory usage
	Logging
	Administration and monitoring
	Migration of a UNICORE/X server to another physical host

	Security concepts in UNICORE/X
	Security concepts

	Attribute sources
	UNICORE incarnation and authorization attributes
	Configuring Attribute Sources
	Available attribute sources

	Virtual Organisations (VO) Support
	Overview
	Configuration
	VO configuration HOWTOs

	The UNICORE persistence layer
	Configuring the persistence layer
	Clustering

	Configuring the XNJS
	The UNICORE TSI
	Support for the UNICORE RUS Accounting

	The IDB
	Defining the IDB file
	Using an IDB directory
	Applications
	TargetSystemProperties
	Script templates
	More on the IDB Application definitions
	Application metadata (simple)
	Execution Environments
	IDB definition of execution environments
	Custom resource definitions
	Tweaking the incarnation process
	Incarnation tweaking context

	The UNICORE metadata service
	Enabling the metadata service
	Controlling metadata extraction

	Authorization back-end (PDP) guide
	Basic configuration
	Available PDP modules

	Guide to XACML security policies
	Policy sets and combining of results
	Role-based access to services
	Limiting access to services to the service instance owner
	More details on XACML use in UNICORE/X
	Policy examples in XACML 1.1 syntax

	Proxy certificate support
	TLS proxy support
	GSI tools support

	XtreemFS support
	Site setup

	SCP support
	Site setup
	SCP wrapper script

	Mail support
	Site setup
	Email wrapper script

	EMIR support
	The CIP (Infoprovider)
	The Application service (GridBean service)

