
UNICORE/X Manual

UNICORE/X MANUAL

UNICORE Team

Document Version: 1.0.0
Component Version: 6.5.0
Date: 21 05 2012

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant
Agreement Nr. INFSO-RI-261611.

UNICORE/X Manual

Contents

1 Getting started 1

1.1 Prerequisites . 1

1.2 Installation . 1

2 Configuration of UNICORE/X 2

2.1 Overview of the main configuration options 2

2.2 Config file overview . 3

2.3 Settings for the UNICORE/X process (e.g. memory) 4

2.4 Config file formats . 4

2.5 Integration of UNICORE/X into a UNICORE infrastructure 5

2.6 Startup code . 7

2.7 Security . 8

2.8 Configuring the XNJS and TSI . 10

2.9 Configuring storages on TargetSystem instances 10

2.10 Configuring the StorageFactory service . 12

2.11 HTTP proxy, timeout and web server settings 13

3 Administration 14

3.1 Controlling UNICORE/X memory usage . 14

3.2 Logging . 15

3.3 Administration and monitoring . 19

4 Security concepts in UNICORE/X 21

4.1 Security concepts . 21

5 Configuring attribute sources 23

5.1 UNICORE incarnation attributes . 24

5.2 XUUDB . 26

5.3 UVOS . 26

5.4 File attribute source . 26

5.5 Chained attribute source . 28

UNICORE/X Manual

6 The UNICORE persistence layer 28

6.1 Configuring the persistence layer . 29

6.2 Clustering . 32

7 Configuring the XNJS 34

7.1 The UNICORE TSI . 35

7.2 Support for the UNICORE RUS Accounting 39

8 The IDB 39

8.1 Defining the IDB file . 40

8.2 Using an IDB directory . 40

8.3 Applications . 40

8.4 TargetSystemProperties . 42

8.5 Script templates . 46

8.6 More on the IDB Application definitions . 47

8.7 Application metadata (simple) . 49

8.8 Execution Environments . 50

8.9 IDB definition of execution environments . 51

8.10 Custom resource definitions . 54

8.11 Tweaking the incarnation process . 56

8.12 Incarnation tweaking context . 64

9 The UNICORE metadata service 66

9.1 Enabling the metadata service . 66

9.2 Configuring the metadata service . 67

10 Authorization back-end (PDP) guide 67

10.1 Basic configuration . 68

10.2 Available PDP modules . 68

11 Guide to XACML security policies 70

11.1 Policy sets and combining of results . 71

11.2 Role-based access to services . 72

11.3 Limiting access to services to the service instance owner 73

11.4 More details on XACML use in UNICORE/X 74

11.5 Policy examples in XACML 1.1 syntax . 74

UNICORE/X Manual

12 Proxy certificate support 77

12.1 TLS proxy support . 77

12.2 GSI tools support . 77

13 XtreemFS support 79

13.1 Site setup . 79

14 SCP support 79

14.1 Site setup . 80

14.2 SCP wrapper script . 81

15 EMIR support 82

UNICORE/X Manual 1

The UNICORE/X server is the central component of a UNICORE site. It hosts the services such
as job submission, job management, storage access, and provides the bridge to the functionality
of the target resources, e.g. batch systems or file systems.

For more information about UNICORE visit http://www.unicore.eu.

1 Getting started

1.1 Prerequisites

To run UNICORE/X, you need the SUN or OpenJDK Java 6 (JRE or SDK). If not installed on
your system, you can download it from http://java.oracle.com

UNICORE/X has been most extensively tested on Linux-like systems, but runs on Windows
and MacOS as well.

Please note that

• to integrate into secure production environments, you will need access to a certificate author-
ity and generate certificates for all your UNICORE servers.

• to interface with a resource management system like SGE or Torque, you need to install and
configure the UNICORE TSI.

• to make your resources accessible outside of your firewalls, you should setup and configure a
UNICORE Gateway.

All these configuration options will be explained in the manual below.

1.2 Installation

UNICORE/X can be installed from either a tar.gz or zip archive, or (on Linux) from rpm/deb
packages.

To install from the tar.gz or zip archive, unpack the archive in a directory of your choice. You
should then review the config files in the conf/ directory, and adapt paths, hostname and ports.
The config files are commented, and you can also check the configuration guide Section 2

To install from a Linux package, please use the package manager of your system to install the
archive.

Note
Using the Linux packages, you can install only a single UNICORE/X instance per machine
(without manual changes). The tar.gz / zip archives are self contained, and you can easily
install multiple servers per machine.

The following table gives an overview of the file locations for both tar.gz and Linux bundles.

http://www.unicore.eu
http://java.oracle.com

UNICORE/X Manual 2

Table 1: Directory Layout

Name in this
manual

tar.gz, zip rpm Description

CONF <basedir>/conf/ /etc/unicore/unicorex Config files
LIB <basedir>/lib/ /usr/share/unicore/unicorex/libJava libraries
LOG <basedir>/log/ /var/log/unicore/unicorex/Log files
BIN <basedir>/bin/ /usr/sbin/ Start/stop scripts
— — /etc/init.d/unicore-

unicorex
Init script

1.2.1 Starting/Stopping

There are two scripts that expect to be run from the installation directory. To start, do

cd <basedir>
bin/start.sh

Startup can take some time. After a successful start, the log files (e.g. LOG/startup.log)
contain a message "Server started." and a report on the status of any connections to other servers
(e.g. the TSI or global registry).

To stop the server, do:

cd <basedir>
bin/stop.sh

Using the init script on Linux, you would do (as root)

etc/init.d/unicore-unicorex start|stop

1.2.2 Log files

UNICORE/X writes its log file(s) to the LOG directory. By default, log files are rolled daily,
There is no automated removal of old logs, if required you will have to do this yourself.

Details about the logging configuration are given in this section Section 3.2.

2 Configuration of UNICORE/X

2.1 Overview of the main configuration options

UNICORE/X is a fairly complex software which has many interfaces to other UNICORE com-
ponents and configuration options. This section tries to give an overview of what can and should

UNICORE/X Manual 3

be configured. The detailed configuration guide follows in the next sections.

2.1.1 Mandatory configuration

• Certificates and basic security: UNICORE uses X.509 certificates for all servers. For UNI-
CORE/X these are configured in the wsrflite.xml config file

• Attribute sources: to map clients (i.e. X.509 certificates) to local attributes such as user name,
groups and role, various attribute sources are available. For details, consult the attribute
sources section Section 5.

• Backend / target system access: to access a resource manager like SGE or Torque, the UNI-
CORE TSI needs to be installed and UNICORE/X needs to be configured accordingly. Please
consult the XNJS section Section 7.

UNICORE/X has several sub-components. These are configured using several config files re-
siding in the CONF directory, see the installation guide Section 1 for the location of the CONF
directory.

2.2 Config file overview

The following table indicates the main configuration files. Depending on configuration and
installed extensions, some of these files may not be present, or more files may be present.

UNICORE/X watches some most configuration files for changes, and tries to reconfigure if they
are modified, at least where possible. This is indicated in the "dynamically reloaded" column.
are indicated.

Table 2: UNICORE/X configuration files

config file usage dynamically reloaded
startup.properties Java settings (e.g.

memory), lib/log/conf
directories

no

uas.config General settings, startup
behaviour, storages, AIP
setup

yes

wsrflite.xml Services to be deployed,
SSL settings, Web server
settings

yes

simpleidb Backend, installed
applications, resources

yes

xnjs.xml Back end properties no
xnjs_legacy.xml Back end properties

preconfigured for the Perl
TSI

no

UNICORE/X Manual 4

Table 2: (continued)

config file usage dynamically reloaded
logging.properties logging levels, logfiles and

their properties
yes

xacml2Policies/*.xml Access control policy for
securing the web services

yes, via xacml2.config (do
touch xacml2.config to
trigger)

xacml2.config Configure the XACML2
access control component

yes

vo.config Configure the use of UVOS
(optional attribute source)

no

simpleuudb A file mapping user DNs to
local attributes (optional
attribute source)

yes

jmxremote.password Access control file for
remote monitoring using
the Java management
extensions (JMX)

no

2.3 Settings for the UNICORE/X process (e.g. memory)

The properties controlling the Java virtual machine running the UNICORE/X process are con-
figured in

• UNIX: the CONF/startup.properties configuration file

• Windows: the "CONF\\wrapper.conf" configuration file

These properties include settings for maximum memory, and also the properties for configuring
JMX, see the admin guide Section 3 for more on JMX.

General

2.4 Config file formats

UNICORE/X uses two different formats for configuration.

2.4.1 Java properties

• Each property can be assigned a value using the syntax "name=value"

UNICORE/X Manual 5

• Please do not quote values, as the quotes will be interpreted as part of the value

• Comment lines are started by the "#"

• Multiline values are possible by ending lines with "\", e.g.

name=value1 \
value2

In this example the value of the "name" property will be "value1 value2".

2.4.2 XML

Various XML dialects are being used, so please refer to the example files distributed with UNI-
CORE for more information on the syntax. In general XML is a bit unfriendly to edit, and it is
rather easy to introduce typos.

Note
It is advisable to run a tool such as xmllint after editing XML files to check for typos

2.5 Integration of UNICORE/X into a UNICORE infrastructure

Since UNICORE/X is the central component, it is interfaced to other parts of the UNICORE
architecture, i.e. the Gateway, the Registry and the TSI.

2.5.1 Gateway

The gateway address is usually hard-coded into CONF/wsrflite.xml, and on the gateway side
there is an entry VSITE_NAME=address pointing to the UNICORE/X container. In some sce-
narios it’s convenient to auto-register with a gateway. This can be enabled using the following
properties.

Table 3: Gateway settings

config file property
name

range of
values

description modifyable at
runtime

wsrflite.xml Base URL host/port the host/port of
the gateway

(yes)

uas.config uas.gatewayregistrationtrue or false whether au-
toregistration
should be
enabled

no

UNICORE/X Manual 6

Table 3: (continued)

config file property
name

range of
values

description modifyable at
runtime

uas.gatewayregistration.updateintervalan integer registration
refresh interval
in seconds

no

uas.security.consignor.checksignaturetrue or false whether
gateway
assertions must
be signed (see
also security)

no

uas.onstartup.wait true or false whether
UNICORE/X
should check if
the gateway is
up during
startup

no

Note
To use the autoregistration feature, the gateway configuration must be set up accordingly

2.5.2 Registry

It is possible to configure UNICORE/X to contact one or more external or "global" Registries
in order to publish information on crucial services there. Most of the following properties deal
with the automatic discovery and/or manual setup of the external registries being used.

Table 4: Registry settings

config file property
name

range of
values

description modifyable at
runtime

uas.config uas.externalregistry.use"true", "false" whether to
publish service
information in
an external
registry

yes

UNICORE/X Manual 7

Table 4: (continued)

config file property
name

range of
values

description modifyable at
runtime

uas.externalregistry.urla valid URL use this URL
for external
registry if
automatic
discovery is
switched off or
fails

yes

uas.externalregistry.url.*more valid
URLs

additional
registry URLs

yes

wsrflite.xml unicore.wsrflite.sg.defaulttermtimea long value alive-check
interval for
registry entries
in seconds ; an
external
registry will
enforce its own
value

yes

uas.externalregistry.autodiscover"true", "false" if set to "true",
try to
autodiscover
the external
registry via
UDP multicast

yes

2.6 Startup code

In order to provide a flexible initialization process for the UAS, we introduce a property named
"uas.onstartup", which is defined in the file "uas.config". The value string of this property con-
sists of a whitespace separated list of java classes which must be implementing the "Runnable"
interface. Many extensions for UNICORE/X rely on an entry in this property to initialise them-
selves.

UNICORE/X Manual 8

Table 5: Startup code

class name description usage
de.fzj.unicore.uas.util.DefaultOnStartupinitialises the job

management system and
the "local" registry; should
usually be run on startup

normal UNICORE/X
servers

de.fzj.unicore.bes.util.BESOnStartupinitialises the OGSA-BES
job management system

UNICORE/X servers that
expose BES services

de.fzj.unicore.cisprovider.impl.InitOnStartupsets up the CIS
infoprovider

UNICORE/X servers that
want to provide
information in GLUE2
format or want to be visible
in the CIS

com.intel.gpe.gridbeans.PublishGridBeanServiceif available, publishes the
GridBeanService to the
registry

UNICORE/X servers that
host a Gridbean service

de.fzj.unicore.uas.util.CreateSMSOnStartupcreates and deploys a
single instance of the SMS
that is shared between
users, named
default_storage

if a shared storage is
required

2.7 Security

2.7.1 Overview

Security is a complex issue, and many options exist. On a high level, the following items need
to be configured.

• SSL setup (keystore and truststore settings for securing the basic communication between
components)

• Attribute sources configuration (which will map Grid users to local properties such as role,
Unix login and groups)

• Access control setup (controlling in detail who can do what on which services)

• Message level security (message signatures)

2.7.2 SSL configuration

Here you configure the server identity and the certificates of other services that want to contact
this server.

UNICORE/X Manual 9

Table 6: SSL configuration

config file property name range of values description
wsrflite.xml unicore.wsrflite.ssl.keystoreName of keystore

file
The keystore must
contain at least one
private/public
keypair

unicore.wsrflite.ssl.keytypePKCS12, JKS Keystore type
unicore.wsrflite.ssl.keypassKeystore password
unicore.wsrflite.ssl.keyaliasAlias of the key to

use
unicore.wsrflite.ssl.clientauth"true" or "false" Whether to require

client-
authentication

unicore.wsrflite.ssl.truststoreName of truststore
file

The truststore
contains certificates
that are trusted by
the server

unicore.wsrflite.ssl.truststoretypePKCS12, JKS
unicore.wsrflite.ssl.truststorepassTruststore

password

2.7.3 Attribute sources configuration

Attribute sources provide information about which local role and properties a Grid user has.
UNICORE knows several attribute sources which can be combined using various combining
algorithms. These are configured in the uas.config file. Due to the complexity, the description
of the configuration options can be found in a separate chapter Section 5.

2.7.4 Access control configuration

Access control works by checking a Grid user’s attributes (obtained from the attribute sources)
against a set of policies. Again, several options exist, which are described in a separate chapter
Section 10.

2.7.5 Message signatures

UNICORE/X will require important messages (like job submissions or file exports). The prop-
erty controlling this is - uas.security.signatures If set to true, signatures are required.

UNICORE/X Manual 10

2.8 Configuring the XNJS and TSI

Information on the configuration of the XNJS and TSI backend can be found here Section 7.

2.9 Configuring storages on TargetSystem instances

Each TargetSystem instance can have one or more storages attached to it. Note that this is
different case from the shared storage (the one created with CreateSMSOnStartup hook) which
is not attached to any particular TargetSystem. The practical difference is that to use storages
attached to a TargetSystem, a user must first create one.

By default, only the HOME storage is created, which allows users access their home directory
on the target system. You can add storages easily, using configuration entries in uas.config.

Table 7: Additional storages

config file property name range of values description
uas.config uas.targetsystem.storage.NString disambiguates

several
configuration entry
sets

uas.targetsystem.storage.N.typeFIXEDPATH,
VARIABLE or
CUSTOM

FIXEDPATH:
mapped to a fixed
directory,
VARIABLE:
resolved using a
lookup, CUSTOM:
specified class is
used

uas.targetsystem.storage.N.pathString Denotes a path or
the name of an
environment
variable (depending
on the type)

uas.targetsystem.storage.N.classJava class name Java class to use,
only necessary
when type is
CUSTOM

UNICORE/X Manual 11

Table 7: (continued)

config file property name range of values description
uas.targetsystem.storage.N.protocolsSpace-separated

protocol names
Which protocols to
enable, default is
defined by the
property
uas.sms.protocols
in the
uas.config. If
uas.sms.protocols
is undefined then
only RBYTEIO
and BFT are
enabled.

uas.targetsystem.storage.N.filterFilestrue or false If set to true then
this SMS will filter
returned files in
response of the
ListDirectory
command: only
files owned or
accessible by the
caller will be
returned. By
default it is set to
false.

uas.targetsystem.storage.N.defaultUmaskoctal number

Here, "N" stands for an identifier (e.g. 1,2, 3, . . .) to distinguish the storages. For exam-
ple, to configure two storages, one named TEMP pointing to "/tmp" and the other named
DEISA_HOME pointing to "$DEISA_HOME", you would add the following configuration en-
tries in uas.config:

uas.targetsystem.storage.1=TEMP
uas.targetsystem.storage.1.type=FIXEDPATH
uas.targetsystem.storage.1.path=/tmp
uas.targetsystem.storage.1.protocols=UFTP BFT

uas.targetsystem.storage.2=DEISA_HOME
uas.targetsystem.storage.2.type=VARIABLE
uas.targetsystem.storage.2.path=$DEISA_HOMES

example for a custom SMS implementation (e.g. for Hadoop or iRODS ←↩
)

UNICORE/X Manual 12

uas.targetsystem.storage.3=IRODS
uas.targetsystem.storage.3.type=CUSTOM
uas.targetsystem.storage.3.path=/
uas.targetsystem.storage.3.class=my.custom.sms.ImplementationClass

Note that you can optionally control the file transfer protocols that should be enabled for each
storage.

2.9.1 Controlling target system’s storage resources

By default storage resource names (used in storage address) are formed from the owning user’s
xlogin and the storage type name, e.g. "someuser-Home". This is quite useful as users can write
a URL of the storage without prior searching for its address. However if the site’s user mapping
configuration, maps more then one grid certificate to the same xlogin then this solution is not
acceptable: only the first user connecting would be able to access her/his storage. This is as
resource owners are expressed as grid user names (certificate DNs) and not xlogins. To have an
unique, but dynamically created and non user friendly names of storages (and solve the problem
of non-unique DN mappings) set this option in uas.config:

uas.targetsystem.storage.force_unique_ids=true

If you want to disable the default "Home" storage, you can set the following property in
uas.config:

uas.targetsystem.home.disable=true

2.10 Configuring the StorageFactory service

The StorageFactory service allows clients to dynamically create storage instances. These can
have different types, for example you could have storages on a normal filesystem, and other
storages on an Apache Hadoop cluster.

The basic property controls which storage types are supported

uas.storagefactory.types=TYPE1 TYPE2 ...

Each supported storage type is configured using a set of properties

uas.storagefactory.TYPE1.description=GPFS file system
uas.storagefactory.TYPE1.fixedpath=GPFS file system
uas.storagefactory.TYPE1.path=/mnt/gpfs/unicore/unicorex-1/storage- ←↩

factory
uas.storagefactory.TYPE1.protocols=UFTP BFT

if this is set to true, the directory corresponding to a storage ←↩
instance will

be deleted when the instance is destroyed. Defaults to "true"
uas.storagefactory.TYPE1.cleanup=true

UNICORE/X Manual 13

The "path" parameter determines the base directory used for the storage instances (i.e. on the
backend), and the unique ID of the storage will be appended automatically.

The "cleanup" parameter controls whether the storage directory will be deleted when the storage
is destroyed.

The normal storage properties (see the previous section) are also accepted: "protocols", "type",
"class", "filterFiles" etc.

If you have a custom storage type, an additional "class" parameter defines the Java class name
to use (as in normal SMS case). For example:

uas.storagefactory.TYPE1.type=CUSTOM
uas.storagefactory.TYPE1.class=de.fzj.unicore.uas.hadoop. ←↩

SMSHadoopImpl

2.11 HTTP proxy, timeout and web server settings

The UNICORE Services Environment container has a number of settings related to the web
server and to the HTTPClient library used for outgoing HTTP(s) calls. These are shown in the
following two tables.

Table 8: Web server options

property name range of values default value description
unicore.wsrflite.jetty.maxThreadsInteger 255 Maximum number

of threads for Jetty
unicore.wsrflite.jetty.minThreadsInteger 1 Minimum number

of threads
unicore.wsrflite.jetty.maxIdleTimeInteger 1000 Milliseconds before

an idle connection
will be timed out

unicore.wsrflite.jetty.lowThreadsInteger 50 If the number of
free threads is
below this value,
idle connections
will be timed out
quicker

unicore.wsrflite.jetty.lowResourceMaxIdleTimeInteger 100 under "low
resource"
condition,
milliseconds before
an idle connection
will be timed out

unicore.wsrflite.jetty.maxIdleTimeInteger 1000 Milliseconds before
an idle connection
will be timed out

UNICORE/X Manual 14

Table 8: (continued)

property name range of values default value description
unicore.wsrflite.jetty.gzip.minGzipSizeInteger 65535 The size of the

largest data chunk
that will not be
compressed (if the
client supports
gzip)

unicore.wsrflite.jetty.gzip.bufferSizeInteger 8192 Buffer size used for
gzip compression

Table 9: Outgoing HTTP call options

property name range of values default value description
http.connection.timeoutInteger 10000 Socket connection

timeout in millis
http.timeout Integer 10000 Socket read timeout

in millis
http.proxyHost String HTTP proxy host
http.proxyPort Integer HTTP proxy port
http.proxy.user String Proxy server user
http.proxy.password String Proxy server

password
http.nonProxyHosts String Space separated list

of host name
fragments which
are not proxied

3 Administration

3.1 Controlling UNICORE/X memory usage

You can set a limit on the number of service instances (e.g. jobs) per user. This allows you
to make sure your server stays nicely up and running even if flooded by jobs. To enable, edit
CONF/wsrflite.xml and add properties, e.g.

<property name="unicore.maxInstancesPerUser.JobManagement" value ←↩
="200"/>

UNICORE/X Manual 15

<property name="unicore.maxInstancesPerUser.FileTransferBFT" ←↩
value="20"/>

The last part of the property name is the service name as defined in wsrflite.xml.

When the limits are reached, the server will report an error to the client (e.g. when trying to
submit a new job).

3.2 Logging

UNICORE uses the Log4j logging framework. It is configured using a config file. By de-
fault, this file is CONF/logging.properties. To change the default, edit the start script
(BIN/start.sh) or, on Windows, the CONF/wrapper.conf. The config file is specified
with a Java property log4j.configuration.

Note
You can change the logging configuration at runtime by editing the logging.properties file. The
new configuration will take effect a few seconds after the file has been modified.

By default, log files are written to the the LOGS directory.

The following example config file configures logging so that log files are rotated daily.

Set root logger level to INFO and its only appender to A1.
log4j.rootLogger=INFO, A1

A1 is set to be a rolling file appender with default params
log4j.appender.A1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.A1.File=logs/uas.log

#configure daily rollover: once per day the uas.log will be copied
#to a file named e.g. uas.log.2008-12-24
log4j.appender.A1.DatePattern=’.’yyyy-MM-dd

A1 uses the PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c{1} %x - ←↩

%m%n

Note
In Log4j, the log rotation frequency is controlled by the DatePattern. Check
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
for the details.

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html

UNICORE/X Manual 16

Within the logging pattern, you can use special variables to output information. In addition to
the variables defined by Log4j (such as %d), UNICORE defines several variables related to the
client and the current job.

Variable Description
%X{clientName} the distinguished name of the current

client
%X{jobID} the unique ID of the currently processed

job

A sample logging pattern might be

log4j.appender.A1.layout.ConversionPattern=%d [%X{clientName}] [%X{ ←↩
jobID}] [%t] %-5p %c{1} %x - %m%n

For more info on controlling the logging we refer to the log4j documentation:

• PatternLayout

• RollingFileAppender

• DailyRollingFileAppender

Log4j supports a very wide range of logging options, such as date based or size based file
rollover, logging different things to different files and much more. For full information on
Log4j we refer to the publicly available documentation, for example the Log4j manual.

3.2.1 Logger categories, names and levels

Logger names are hierarchical. In UNICORE, prefixes are used (e.g. "unicore.security") to
which the Java class name is appended. For example, the XUUDB connector in UNICORE/X
logs to the "unicore.security.XUUDBAuthoriser" logger.

Therefore the logging output produced can be controlled in a fine-grained manner. Log levels
in Log4j are (in increasing level of severity) TRACE, DEBUG, INFO, WARN, ERROR, amd
FATAL.

For example, to debug a security/authorisation problem in the UNICORE/X security layer, you
can set

log4j.logger.unicore.security=DEBUG

If you are just interested in XUUDB related output, you can set

log4j.logger.unicore.security=INFO
log4j.logger.unicore.security.XUUDBAuthoriser=DEBUG

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/manual.html

UNICORE/X Manual 17

so the XUUDBAuthoriser will log on DEBUG level, while the other security components log
on INFO level.

Here is a table of the various logger categories

UNICORE/X Manual 18

Log category Description
unicore All of UNICORE
unicore.security Security layer
unicore.services Service operational information
unicore.services.jobexecution Information related to job execution
unicore.services.jobexecution.USAGE Usage logging (see next section)
unicore.xnjs XNJS subsystem (execution engine)
unicore.xnjs.tsi TSI subsystem (batch system connector)
unicore.client Client calls (to other servers)
unicore.wsrflite Underlying services environment (WSRF

framework)

Note
Please take care to not set the global level to TRACE or DEBUG for long times, as this will
produce a lot of output.

3.2.2 Usage logging

Often it is desirable to keep track of the usage of your UNICORE site. The UNICORE/X server
has a special logger category called unicore.services.jobexecution.USAGE which
logs information about finished jobs at INFO level. If you wish to enable this, set

log4j.logger.unicore.services.jobexecution.USAGE=INFO

Note
If you are setting up a production environment and need a sophisticated accounting solution
(featuring database with a real resources consumption, WWW interface and possibility to
produce reports or aggregated data) then consider deploying UNICORE RUS Accounting.
Further instructions can be found in here Section 7.2.

It might be convenient to send usage output to a different file than normal log output. This is
easily achieved with log4j:

send usage logger output to a separate file

use separate appender ’U1’ for usage info
log4j.logger.unicore.services.jobexecution.USAGE=INFO,U1

U1 is set to be a rolling file appender with default params
log4j.appender.U1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.U1.File=logs/usage.log
U1 uses the PatternLayout
log4j.appender.U1.layout=org.apache.log4j.PatternLayout

UNICORE/X Manual 19

log4j.appender.U1.layout.ConversionPattern=%d [%t] %-5p %c{1} %x - ←↩
%m%n

For each finished job, the usage logger will log a line with the following information (if avail-
able)

[result] [executable] [actionUUID] [clientDN] [BSSJobId] [←↩
clientXlogin] [jobName] [machineName] [VOs]

An example output line is:

2011-08-16 10:00:39,513 [XNJS-1-JobRunner-1] INFO USAGE - [←↩
SUCCESSFUL] [/bin/date] [e9deab79-af1f-4704-a6bd-427b3ab20969 ←↩
] [CN=Bernd Schuller, OU=VSGC, OU=Forschungszentrum Juelich ←↩
GmbH, O=GridGermany, C=DE] [82942] [schuller] [Date job ←↩
submitted using UCC] [zam025c02.zam.kfa-juelich.de] []

3.3 Administration and monitoring

The health of a UNICORE/X container, and things like running services, lifetimes, etc. can be
monitored in several ways.

3.3.1 Commandline client (UCC)

It is possible to use the UNICORE commandline client (UCC) to list jobs, extend lifetimes, etc.

The trick is to configure UCC so that it uses the server certificate of the UNICORE/X server,
so that UCC will have administrator rights. Also you should connect directly to UNICORE/X,
not to the registry as usual. Here is an example UCC configuration file. Say your UNICORE/X
server is running on myhost on port 7777, your preferences file would look like this

registry=https://myhost:7777/services/Registry?res=default_registry
keystore=path/to/unicorex/keystore
storetype=...
password=...

Note that the registry URL points directly to the UNICORE/X server, not to a gateway.

Examples

The main UCC commands that are useful are the list-jobs, list-sites and wsrf commands. Using
list-jobs you can search for jobs with given properties, whereas the wsrf command allows to
look at any resource, or even destroy resources.

To list all jobs on the server belonging to a specific user, do

UNICORE/X Manual 20

ucc list-jobs -f Log contains <username>

where username is some unique part of the user’s DN, or the xlogin. Similarly, you can filter
based on other properties of the job.

The wsrf command can be used to destroy resources, extend their lifetime and look at their
properties. Please see "ucc wsrf -h" for details.

Try

ucc wsrf getproperties https://myhost:7777/services/ ←↩
TargetSystemFactory?res=default_target_system_factory

3.3.2 Java Management Extensions (JMX)

Using the Java Management Extensions, you can monitor any Java virtual machine using (for
example) a program called "jconsole" that is part of the Sun/Oracle Java SDK. It allows to check
memory and thread usage, as well as access to application specific management components
("MBeans").

Enabling access

Connecting to a running Java VM locally is always possible, however remote access needs to be
specially configured. To enable remote access to JMX, please check the startup.properties file
of UNICORE/X. There several system properties are defined that enable and configure remote
access via JMX.

#
#enable JMX (use jconsole to connect)
#
OPTS=$OPTS" -Dcom.sun.management.jmxremote"
#enable JMX remote access protected by username/password
OPTS=$OPTS" -Dcom.sun.management.jmxremote.port=9128 -Dcom.sun. ←↩

management.jmxremote.authenticate=true"
OPTS=$OPTS" -Dcom.sun.management.jmxremote.ssl=false"
OPTS=$OPTS" -Dcom.sun.management.jmxremote.password.file=conf/ ←↩

jmxremote.password"

The password file "conf/jmxremote.password" must contain lines of the form "username=password",
and must have its permissions set to "rw for owner only" (at least on Unix).

Using jconsole, you can now connect from a remote machine.

UNICORE/X Manual 21

4 Security concepts in UNICORE/X

This section describes the basic security concepts and architecture used in UNICORE/X. The
overall procedure performed by the security infrastructure can be summarised as follows:

• the incoming message is authenticated by the SSL layer

• extract the information used for authorisation from the message sent to the server. This infor-
mation includes: originator of the message(in case the message passed through a UNICORE
gateway), trust delegation tokens, incoming VO membership assertions, etc.

• deal with trust delegation

• generate or lookup attributes to be used used for authorisation in the configured attribute
sources Section 5

• perform policy check by executing a PDP Section 10 request

All these steps can be switched on/off, and use pluggable components. Thus, the security level
of a UNICORE/X server is widely configurable

4.1 Security concepts

4.1.1 Identity

A server has a certificate, which is used to identify the server when it makes a web service
request. This certificate resides in the server keystore, and can be configured in the usual config
file (see the configuration reference Section 2.

4.1.2 Security tokens

When a client makes a request to UNICORE/X, a number of tokens are read from the message
headers. These are placed in the security context that each WSRF instance has. Currently,
tokens are the certificates for the UNICORE consignor and user, if available. Also, trust dele-
gation assertions are read, and it is checked if the message is signed.

4.1.3 Resource ownership

Each service is owned by some entity identified by a distinguished name (X500 Principal). By
default, the server is the owner. When a resource is created on user request (for example when
submitting a job), the user is the owner.

UNICORE/X Manual 22

4.1.4 Trust delegation

When the user and consignor are not the same, UNICORE/X will check whether the consignor
has the right to act on behalf of the user. This is done by checking whether a trust delegation
assertion has been supplied and is valid.

4.1.5 Attributes

UNICORE/X retrieves user attributes using either a local component or a remote service. In the
default configuration, the XUUDB attribute service is contacted. See the attribute sources guide
Section 5 for more information.

4.1.6 Policy checks

Each request is checked based on the following information.

• available security tokens

• the resource owner

• the resource accessed (e.g. service name + WSRF instance id)

• the activity to be performed (the web method name such as GetResourceProperty)

The validation is performed by the PDP (Policy Decision Point). The default PDP uses a list
of rules expressed in XACML 2.0 format that are configured for the server. The PDP section
Section 10 describes how to configure different engines for policy evaluation including a remote
one.

4.1.7 Authorisation

A request is allowed, if the PDP allows it, based on the user’s attributes.

4.1.8 Proxy certificate support

UNICORE clients can be configured to create a proxy certificate and send it to the server. On
the server, the proxy can be used to invoke GSI-based tools. Please read the proxy section
Section 12 about the configuration details.

UNICORE/X Manual 23

5 Configuring attribute sources

The authorization process in UNICORE/X requires that each Grid user (identified by an X.509
certificate or just the DN) is assigned some attributes such as her role.

So the single most important item for security configuration is selecting and maintaining a so
called attribute source, which is used by UNICORE/X to assign attributes to Grid users.

Several attribute sources are available, that can even be combined for maximum flexibility and
administrative control.

To configure the attribute sources, the uas.security.attributes.order property in
the uas.config file is used. This is a space-separated list with attribute sources names, where
the named attribute sources will be queried one after the other, allowing you to query multiple
attribute sources, override values etc.

A second property, uas.security.attributes.combiningPolicy, allows you to
control how attributes from different sources are combined.

For example, the following configuration snippet

#
Authorisation attribute source configuration
#
uas.security.attributes.order=XUUDB FILE

#
Combining policy
#
MERGE_LAST_OVERRIDES (default), FIRST_APPLICABLE, ←↩

FIRST_ACCESSIBLE or MERGE
uas.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES

will declare two attribute sources, "XUUDB" and "FILE", which should be both queried and
combined using the MERGE_LAST_OVERRIDES policy.

Since all attribute sources will be queried, it has to be defined how attributes will be combined.
For example, assume you have both XUUDB and FILE, and both return a xlogin attribute for a
certain user, say "xlogin_1" and "xlogin_2".

The different combining policies are

• MERGE_LAST_OVERRIDES : new attributes override those from previous sources. In our
example, the result would be "xlogin_2".

• FIRST_APPLICABLE : the attributes from the first source that returned a non empty list of
attributes are used. In our case this would be "xlogin_1". If there were no xlogin attribute for
the user in XUUDB then "xlogin_2" would be returned.

• FIRST_ACCESSIBLE : the attributes from the first source that is accessible are used. In our
case this would be "xlogin_1". This policy is useful for redundant attribute sources. E.g. you

UNICORE/X Manual 24

can configure two instances of XUUDB with the same users data; the 2nd one will be tried
only if the first one is down.

• MERGE : attributes are merged. In our example, the result would be "xlogin_1, xlogin_2",
and the user would be able to choose between them.

Each of the sources needs a mandatory configuration option defining the Java class, and sev-
eral optional properties that configure the attribute source. In our example, one would need to
configure both the "XUUDB" and the "FILE" source:

uas.security.attributes.XUUDB.class=...
uas.security.attributes.XUUDB.xuudbHost=...
...

uas.security.attributes.FILE.class=...
uas.security.attributes.FILE.file=...
...

Additionally you can mix several combining policies together, see "Chained attribute source"
below for details.

5.1 UNICORE incarnation attributes

Precisely speaking UNICORE uses user’s attributes for two purposes:

• to perform user incarnation, i.e. map the grid user to the local system,

• to authorize the user.

Note that actual names of the attributes presented here are not very important. Real attribute
names are defined by attribute source (advanced attribute sources, like UVOS/SAML attribute
source, even provide a possibility to choose what attributes are mapped to internal UNICORE
attributes. Therefore it is only important to know the concepts represented by the below internal
attributes. On the other hand values which are defined below are important.

The attributes in UNICORE are multi-valued.

There are several special attributes used for incarnation:

• Xlogin - specify what local user id (in UNIX so called uid) should be assigned for the grid
user.

• Group - specify the primary group (primary gid) that the grid user should get.

• Supplementary groups - specify all supplementary groups the grid user should get.

• Add operating system groups - boolean attribute saying whether groups assigned to the Xlogin
(i.e. the local uid of the grid user) in the operating system should be additionally added for
the grid user.

UNICORE/X Manual 25

• Queue - override IDB queues setting for the particular user, defining available BSS queues.

There is one special authorization attribute:

• role - represents abstract users role. The role is used in a default (and rarely changed) UNI-
CORE authorization policy and in authorization process in general. There are several possible
values that make sense:

• user - value specifies that the subject is allowed to use the site as a normal user (submit jobs,
get results, . . .)

• admin - value specifies that the subject is an admin and may do everything. For example
may submit jobs, get results of jobs of other users and even delete them.

• trustedAgent - this value is used to express that the subject may act as any user the
subject wants. E.g. if John has this role then can get Marry’s job results and also submit
job as Frank. It is highly suggested not to use this role, its support is minimal mostly for
backwards compatibility.

• anything else - means that user is not allowed to do anything serious. Some very basic, read-
only operations are allowed, but this is technical detail. It is a good practice to use value
banned in such case.

Finally UNICORE can consume other attributes. All other attributes are used only for authoriza-
tion. Currently all such additional attributes which are received from attribute source are treated
as XACML attributes and are put into XACML evaluation context. This feature is rather rarely
used, but it allows to create a very fine grained authorization policies, using custom attributes.

Particular attribute sources define how to assign these attribute to users. Not always all are
supported, e.g. XUUDB can not define per-user queues and offers only Group attribute for
controlling users’ groups.

After presenting all special UNICORE attributes it must be noted that those attributes are used
in two ways. Their primary role is to strictly define what is allowed for the user. For instance
the Xlogin values specify the valid Xlogins from which the user may choose one. One excep-
tion here is Add operating system groups - user is always able to set this according to his/her
preference.

The second way of using those attributes is to specify the default behavior, when the user is
not expressing a preference. E.g. a default Group (which must be single valued) specify which
group should be used if the user didn’t provide any.

Attribute sources define the permitted values and default values for the attributes in various
ways. Some use conventions (e.g. that first permitted value is a default one), some use pair of
real attributes to define each of UNICORE attributes.

UNICORE/X Manual 26

5.2 XUUDB

The XUUDB is the standard option in UNICORE. It has the following features

• Web service interface for querying and administration. It is suitable for serving data for
multiple clients. Usually it is deployed to handle attributes for a whole grid site.

• Access protected by client-authenticated SSL

• Supports the xlogin, role and project attributes (where project maps to Unix
groups)

• Multiple xlogins per certificate or DN, where the user can select one

• Entries are grouped using the so-called Grid component ID (GCID). This makes it easy to
assign users different attributes when accessing different UNICORE/X servers.

To enable and configure the XUUDB, set the following properties in uas.config.

uas.security.attributes.order=... XUUDB ...
uas.security.attributes.XUUDB.class=eu.unicore.uas.security. ←↩

XUUDBAuthoriser
uas.security.attributes.XUUDB.xuudbHost=https://<xuudbhost>
uas.security.attributes.XUUDB.xuudbPort=<xuudbport>
uas.security.attributes.XUUDB.xuudbGCID=<your_gcid>

Full XUUDB documentation is available from http.://www.unicore.eu/documentation/manuals/xuudb

5.3 UVOS

The UNICORE Virtual Organisation Service (UVOS) is a powerful tool for managing access
based on the concept of virtual organisations. A detailed description and configuration guidance
can be obtained from http://unicore-dev.zam.kfa-juelich.de/documentation/xfire-voutils-1.4.0/-
manual.html

5.4 File attribute source

In simple circumstances, or as an addition to a XUUDB or UVOS, the file attribute source can
be used. As the name implies a simple map file is used to map DNs to xlogin, role and other
attributes. It is useful when you don’t want to setup an additional service (XUUDB or UVOS)
and also when you want to locally override attributes for selected users (e.g. to ban somebody).

To use, set

uas.security.attributes.order=... FILE ...
uas.security.attributes.FILE.class=eu.unicore.uas.security.file. ←↩

FileAttributeSource
uas.security.attributes.FILE.file=<your map file>
uas.security.attributes.FILE.matching=<strict|regexp>

http://unicore-dev.zam.kfa-juelich.de/documentation/xfire-voutils-1.4.0/manual.html
http://unicore-dev.zam.kfa-juelich.de/documentation/xfire-voutils-1.4.0/manual.html

UNICORE/X Manual 27

The map file itself has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<fileAttributeSource>

<entry key="USER DN">
<attribute name="role">

<value>user</value>
</attribute>
<attribute name="xlogin">

<value>unixuser</value>
<value>nobody</value>
...

</attribute>
...

</entry>
...

</fileAttributeSource>

You can add an arbitrary number of attributes and attribute values.

The matching option controls how a client’s DN is mapped to a file entry. In strict mode,
the canonical representation of the key is compared with the canonical representation of the
argument. In regexp mode the key is considered a Java regular expression and the argument
is matched with it. When constructing regular expressions a special care must be taken to
construct the regular expression from the canonical representation of the DN. The canonical
representation is defined here. (but you don’t have to perform the two last upper/lower case
operations). In 90% of all cases (no multiple attributes in one RDN, no special characters, no
uncommon attributes) it just means that you should remove extra spaces between RDNs.

The evaluation is simplistic: the first entry matching the client is used (which is important when
you use regular expressions).

The attributes file is automatically refreshed after any change, before a subsequent read. If the
syntax is wrong then an error message is logged and the old version is used.

Recognized attribute names are:

• xlogin

• role

• group

• supplementaryGroups

• addOsGroups (with values true or false)

• queue

Attributes with those names (case insensitive) are handled as special UNICORE incarnation
attributes. The correspondence should be straightforward, e.g. the xlogin is used to provide
available local OS user names for the client.

http://download.oracle.com/javase/6/docs/api/javax/security/auth/x500/X500Principal.html#getName(java.lang.String)

UNICORE/X Manual 28

For all attributes except of the supplementaryGroups the default value is the first one
provided. For supplementaryGroups the default value contains all defined values.

You can also define other attributes - those will be used as XACML authorization attributes,
with XACML string type.

5.5 Chained attribute source

Chained attribute source is a meta source which allows you to mix different combining policies
together. It is configured as other attribute sources with two parameters (except of its class):
order and combiningPolicy. The result of the chain attribute source is the set of attributes
returned by the configured chain.

Let’s consider the following example situation where we want to configure two redundant
UVOS servers (both serving the same data) to achieve high availability. Additionally we want
to override settings for some users using a local file attribute source (e.g. to ban selected users).

The main chain configuration:
uas.security.attributes.order=UVOS_CLUSTER FILE
uas.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES

The FILE source cfg:
uas.security.attributes.FILE.class=eu.unicore.uas.security.file. ←↩

FileBasedAuthoriser
uas.security.attributes.FILE.file=<your map file>

The UVOS_CLUSTER is a sub chain:
uas.security.attributes.UVOS_CLUSTER.class=de.fzj.unicore.uas. ←↩

security.util.AttributeSourcesChain
uas.security.attributes.UVOS_CLUSTER.order=UVOS1 UVOS2
uas.security.attributes.UVOS_CLUSTER.combiningPolicy= ←↩

FIRST_ACCESSIBLE

And configuration of the two real sources used in the sub chain:
uas.security.attributes.UVOS1.class=...
...
uas.security.attributes.UVOS2.class=...
...

6 The UNICORE persistence layer

UNICORE/X stores its state in data bases. The information that is stored includes

• user’s resources (instances of storage, job and other services)

• jobs on the XNJS

UNICORE/X Manual 29

The job directories themselves reside on the target system, but UNICORE keeps additional
information (like, which Grid user owns a particular job).

The data on user resources is organised by service name, i.e. each service (for example, Job-
Management) stores its information in a separate database table (having the same name as the
service, e.g. "JobManagement").

Job information is stored in a table named "JOBS", while finished jobs go into a table called
"FINISHED_JOBS".

The UNICORE persistence layer offers two kinds of storage:

• on the filesystem of the UNICORE/X server (using the H2 database engine)

• on a database server (MySQL, or the so-called server mode of H2)

While the first one is very easy to setup, and easy to manage, the second option allows advanced
setups like clustering/load balancing configurations involving multiple UNICORE/X servers
sharing the same persistent data.

Data migration from one database system to another is in principle possible, but you should
select the storage carefully before going into production. In general, if you do not require
clustering/load balancing, you should choose the default filesystem option, since it is less ad-
ministrative effort.

6.1 Configuring the persistence layer

Peristence properties are configured in two files:

• wsrflite.xml for all service data

• xnjs.xml (or xnjs_legacy.xml) for job data

It is recommended to specify a configuration file using the persistence.config property.
Thus, persistence configuration can be easily shared between the components (XNJS and WS-
RFlite). If the "persistence.config" property is set, the given file will be read as a Java properties
file, and the properties will be used. However, "local" properties will override the ones given in
the file.

Note
All properties can be specified on a "per table" basis, by appending ".<TABLENAME>" to the
property name. This means you can even select different storage systems for different data,
e.g. store service data on the filesystem and jobs in MySQL. The table name is case-sensitive.

UNICORE/X Manual 30

Table 10: Basic configuration options

property name default value description
persistence.config name of a config file to

read
persistence.class de.fzj.unicore.persist.impl.H2Persistname of the Java class
persistence.driver (implemention class may

provide their own)
Java class name of the
JDBC driver

persistence.database name of the database to
connect to

persistence.user database user name
persistence.password database password
persistence.host localhost database server host
persistence.port depends on the

implementation
database server port

6.1.1 Caching

By default, caching of data in memory is enabled. It can be switched off and configured on a
per-table (i.e. per entity class) basis. If you have a lot of memory for your server, you might
consider increasing the cache size for certain components.

The following properties are used to control the caching behaviour

Table 11: Caching options

property name range of values default value description
persistence.cache.enableString "true" "true" or "false" to

enable/disable
caching for the
given table

persistence.cache.maxSizeInteger 50 maximum number
of elements to keep
in the cache

For example, to set the maximum size of the JOBS cache to 1000, you’d configure

persistence.cache.maxSize.JOBS

UNICORE/X Manual 31

6.1.2 The H2 engine

H2 is a pure Java database engine. It can be used in embedded mode (i.e. the engine runs in-
process), or in server mode, if multiple UNICORE servers should use the same database server.
For more information, visit http://www.h2database.com

Table 12: Additional configuration for H2

property name range of values default value description
persistence.directory String name of the

directory for
storing data

persistence.h2.server_mode"true" or "false" false whether to connect
to a h2 server using
tcp

persistence.h2.cache_sizeString denoting an
Integer

4096 in-memory cache
size for H2 in
kilobytes

Connection URL

In embedded mode (i.e. the default non-server mode), the connection URL is constructed from
the configuration properties as follows

jdbc:h2:file:<persistence.directory>/<table_name>

In server mode, the connection URL is constructed as follows

jdbc:h2:tcp://<persistence.host>:<persistence.port>/<persistence. ←↩
directory>/<table_name>

6.1.3 The MySQL Engine

The MySQL database engine does not need an introduction. To configure its use for UNICORE
persistence data, you need to set

persistence.class=de.fzj.unicore.persist.impl.MySQLPersist

To use MySQL, you need access to an installed MySQL server. It is beyond the scope of this
guide to describe in detail how to setup and operate MySQL. The following is a simple sequence
of steps to be performed for setting up the required database structures.

http://www.h2database.com

UNICORE/X Manual 32

• open the mysql console

• create a dedicated user, say unicore who will connect from some server in the domain "your-
domain.com" or from the local host:

CREATE USER ’unicore’@’%.yourdomain.com’ identified by ’ ←↩
some_password’ ;

CREATE USER ’unicore’@’localhost’ identified by ’some_password’ ;

• create a dedicated database for use by the UNICORE/X server:

CREATE DATABASE ’unicore_data_demo_site’;
USE ’unicore_data_demo_site’;

• allow the unicore user access to that database:

GRANT ALL PRIVILEGES ON ’unicore_data_demo_site.*’ to ’unicore’@’ ←↩
localhost’;

GRANT ALL PRIVILEGES ON ’unicore_data_demo_site.*’ to ’unicore’@’%. ←↩
yourdomain.com’;

The UNICORE persistence properties would in this case look like this:

persistence.class=de.fzj.unicore.persist.impl.MySQLPersist
persistence.database=unicore_data_demo_site
persistence.user=unicore
persistence.password=some_password
persistence.host=<your_mysql_host>
persistence.port=<your_mysql_port>

Table 13: Additional configuration for MySQL

property name default value description
persistence.mysql.tabletype MyISAM MySQL table type to use

6.2 Clustering

If you intend to run a configuration with multiple UNICORE servers accessing a shared database,
you need to enable clustering mode by setting a property

UNICORE/X Manual 33

persistence.cluster.enable=true

The clustering config file can be set using a (per-table) property

persistence.cluster.config=<path to config file>

If this is not set, a default configuration is used.

For clustering, the Hazelcast library is used (http://www.hazelcast.com/documentation.jsp). A
simple TCP based configuration is

<hazelcast>
<group>

<name>dev</name>
<password>dev-pass</password>

</group>
<network>

<port auto-increment="true">5701</port>
<join>

<multicast enabled="false">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>

</multicast>
<tcp-ip enabled="true">

<interface>127.0.0.1</interface>
</tcp-ip>

</join>
<interfaces enabled="false">

<interface>10.3.17.*</interface>
</interfaces>

</network>
<executor-service>

<core-pool-size>16</core-pool-size>
<max-pool-size>64</max-pool-size>
<keep-alive-seconds>60</keep-alive-seconds>

</executor-service>
<queue name="default">

<max-size-per-jvm>10000</max-size-per-jvm>
<time-to-live-seconds>0</time-to-live-seconds>

</queue>
<map name="default">

<backup-count>1</backup-count>
<eviction-policy>NONE</eviction-policy>
<max-size>0</max-size>
<eviction-percentage>25</eviction-percentage>

</map>
</hazelcast>

http://www.hazelcast.com/documentation.jsp

UNICORE/X Manual 34

The most important part is the "tcp-ip" setting, which must list at least one other node in the
cluster. The "group" setting allows to run multiple clusters on the same set of hosts, just make
sure that the group name is the same for all nodes in a cluster.

Most of the other settings (map, executor-service, etc) are currently not important, because only
the distributed lock feature of Hazelcast is used. Please read the Hazelcast documentation for
further information.

7 Configuring the XNJS

The XNJS is the UNICORE/X component that deals with the actual job execution and file ac-
cess. It is configured using an XML file named xnjs.xml or xnjs_legacy.xml. The actual file that
is used is set in the uas.config property uas.targetsystemfactory.xnjs.configfile.

#
in uas.config
#
uas.targetsystemfactory.xnjs.configfile=conf/xnjs.xml

Here’s an overview of the most important properties that can be set in this file.

Table 14: Main XNJS properties

config file property
name

range of
values

default value description

xnjs.xml XNJS.filespace an absolute
path on the
target system’s
filesystem

"data/FILESPACE"the directory
on the target
system where
job directories
will be created

XNJS.statedir a path on the
UNICORE/X
machine

"data/NJSSTATE"the directory
on the
UNICORE/X
machine where
the XNJS
keeps its state

XNJS.idbfile a file or
directory name

"conf/simpleidb" the IDB
containing
application
definitions etc.

XNJS.numberofworkersan integer "4" the number of
worker threads
used to process
jobs

UNICORE/X Manual 35

Most of the other settings in this file are used to configure the internals of the XNJS and should
usually be left at their default values.

7.1 The UNICORE TSI

This section describes installation and usage of the UNICORE TSI. This is a mandatory step if
you want to interface to batch systems such as Torque, SGE, or LoadLeveller to efficiently use
a compute cluster.

Note
Without this component, all jobs will run on the UNICORE/X server, under the user id that
started UNICORE/X.

In a nutshell, you have to perform the following steps

• Install the UNICORE TSI on your cluster front end node

• Edit the tsi.properties file

• On the UNICORE/X server, edit uas.config, simpleidb and xnjs_legacy.xml

• Start the newly installed TSI (as root in a multiuser setting)

• Restart UNICORE/X

7.1.1 Installation of the correct TSI

The TSI is a set of perl modules that is running on the target system. In case of a cluster system,
you’ll need to install it on the frontend machine(s), i.e. the machine from where your jobs
are submitted to the batch system. There are different variants available for the different batch
systems such as Torque or SGE.

Usually installation and start of the TSI will be performed as the root user. The TSI will then
be able to change to the current Grid user’s id for performing work (Note: nothing will ever be
executed as "root"). You can also use a normal user, but then all commands will be executed
under this user’s id.

• First, download and install the UNICORE TSI package. The UNICORE core server bundle
("quickstart" package) includes the TSI in the tsi subdirectory. You should copy this folder to
the correct machine first. In the following this will be denoted by <tsidir>

• Install the correct TSI variant by

UNICORE/X Manual 36

cd <tsidir>
./Install.sh

When prompted for the path, choose an appropriate on, denoted <your_tsi> in the following

• Check the tsi file in

<tsidir>/<your_tsi>/perl/tsi

especially command locations, path settings etc.

• set permissions using

cd <tsidir>
./Install_permissions.sh

• MAKE A NOTE of the exact location of the tsi_ls and tsi_df files <tsidir>/<your_tsi>/tsi_ls
and <tsidir>/<your_tsi>/tsi_df

7.1.2 Required TSI Configuration

Configuration is done by editing <tsi_dir>/conf/tsi.properties At least the following settings are
needed:

path to your tsi installation
tsi.path=<tsi_dir>/<your_tsi>

UNICORE/X machine
tsi.njs_machine=<UNICORE/X host>

UNICORE/X listener port (check unicorex/conf/xnjs_legacy.xml ←↩
variable "CLASSICTSI.replyport"

tsi.njs_port=7654

TSI listener port (check unicorex/conf/xnjs_legacy.xml variable " ←↩
CLASSICTSI.port"

tsi.my_port=4433

7.1.3 UNICORE/X configuration

Edit unicorex/conf/uas.config and set the variable

uas.targetsystemfactory.xnjs.configfile=conf/xnjs_legacy.xml

UNICORE/X Manual 37

Edit unicorex/conf/xnjs_legacy.xml. Check the filespace location, this is where the local job
directories will be created. On a cluster, these have to be on a shared part of the filesystem.

Check the CLASSICTSI related properties. Set the correct value for the machine and the ports
(these can usually be left at their default values)

Set the value of CLASSICTSI.TSI_LS to the path of tsi_ls as noted above.

Set the value of CLASSICTSI.TSI_DF to the path of tsi_df as noted above.

Here is an example section for the classic TSI properties.

<eng:Property name="XNJS.tsiclass" value="de.fzj.unicore.xnjs. ←↩
legacy.LegacyTSI"/>

<!-- TSI machine and ports used -->
<eng:Property name="CLASSICTSI.machine" value="localhost"/>
<eng:Property name="CLASSICTSI.port" value="4433"/>
<eng:Property name="CLASSICTSI.replyport" value="7654"/>
<!-- location of the tsi_ls file -->
<eng:Property name="CLASSICTSI.TSI_LS" value="tsi/tsi_ls"/>
<!-- location of the tsi_df file -->
<eng:Property name="CLASSICTSI.TSI_DF" value="tsi/tsi_df"/>
<!-- commands on the target system -->
<eng:Property name="CLASSICTSI.CP" value="/bin/cp"/>
<eng:Property name="CLASSICTSI.RM" value="/bin/rm"/>
<eng:Property name="CLASSICTSI.MV" value="/bin/mv"/>
<eng:Property name="CLASSICTSI.MKDIR" value="/bin/mkdir -p"/>
<eng:Property name="CLASSICTSI.CHMOD" value="/bin/chmod"/>
<eng:Property name="CLASSICTSI.MKFIFO" value="/usr/bin/mkfifo ←↩

"/>
<eng:Property name="CLASSICTSI.PERL" value="/usr/bin/perl"/>
<!-- interval between updates of job stati (milliseconds) -->
<eng:Property name="CLASSICTSI.statusupdate.interval" value ←↩

="5000"/>
<!-- how often the XNJS will re-try to get the status of a job

in case the job is not listed in the status listing -->
<eng:Property name="CLASSICTSI.statusupdate.grace" value="0"/>
<!-- a user that is allowed to see all jobs on the batch system ←↩

-->
<eng:Property name="CLASSICTSI.priveduser" value="someuser"/>
<!-- I/O buffer size, will greatly impact filetransfer ←↩

performance -->
<eng:Property name="CLASSICTSI.BUFFERSIZE" value="1000000"/>

7.1.4 Additional parameters

Some additional parameters exist for tuning the XNJS-TSI communication.

UNICORE/X Manual 38

Table 15: XNJS-TSI communication settings

property name range of values default value description
CLASSICTSI.BUFFERSIZEinteger 1000000 Buffersize for

filetransfers in
bytes

CLASSICTSI.socket.timeoutinteger 300000 Socket timeout in
milliseconds

CLASSICTSI.socket.connect.timeoutinteger 10000 Connection timeout
in milliseconds

7.1.5 Tuning the batch system settings

UNICORE uses the normal batch system commands (e.g. qstat) to get the status of running
jobs. There is a special case if a job is not listed in the qstat output. UNICORE will then
assume the job is finished. However, in some cases this is not true, and UNICORE will have a
wrong job status. To work around, there is a special property

<!-- how often the XNJS will re-try to get the status of a job
in case the job is not listed in the status listing -->

<eng:Property name="CLASSICTSI.statusupdate.grace" value="2"/>

If the value is larger than zero, UNICORE will re-try to get the job status.

Start the TSI using (as root in a multiuser environment)

cd <tsi_dir>/conf
../bin/start_tsi

(or use the unicore-tsi init script if available in your installation)

Finally, restart the UNICORE/X server

Note
When changing TSIs, it’s a good idea to remove the UNICORE/X state and any files before
restarting. See the section on persistence Section 6 for details

7.1.6 Enabling SSL for the XNJS to TSI communication

The UNICORE/X server can be set up to use SSL for communicating with the Perl TSI. On the
UNICORE/X side, this is very simple to switch on. In the XNJS config file, add a line to the
"Core" section:

UNICORE/X Manual 39

<!-- enable SSL using the normal UNICORE/X key and trusted ←↩
certificates -->

<eng:LoadComponent>de.fzj.unicore.uas.xnjs. ←↩
XNJSSecurityConfiguration</eng:LoadComponent>

On the TSI side it is a bit more complex, and you need to have the TSI from the 6.3.0 distribution
or later installed. First of all, your Perl installation must include the module "IO::Socket:SSL"
and its dependencies. If you do not have it, you can get it from the CPAN archive.

In the tsi.properties configuration file, you set the keystore and truststore to be used:

SSL parameters
Keystore must contain the private TSI key and certificate
Trustore must contain the certificate of the CA
tsi.keystore=/certs/keystore.pem
tsi.keypass=yourpassword
tsi.truststore=/certs/keystore.pem

Both keystore and truststore are in pem format.

7.2 Support for the UNICORE RUS Accounting

XNJS can produce accounting data and send it (using JMS messaging) to the UNICORE RUS
Accounting which is a sophisticated and production ready system. The rus-job-processor mod-
ule from this system is included in the Unicore/X release. Note that this system is supposed to
work only when the classic (Perl) TSI is deployed.

Additionally to set up the whole UNICORE RUS Accounting, at least two additional compo-
nents are needed to be installed (rus-service with a records database and rus-bssadapter that
collects resource usage data from LRMS).

Further information on the RUS Accounting system is available in its documentation. Configu-
ration of the rus-job-processor is available in this documentation too, in the respective section.

Other components of the RUS Accounting system can be downloaded from the UNICORE Life
project, files section.

8 The IDB

The UNICORE IDB (incarnation database) contains information on how abstract job definitions
are to be mapped onto real executables. This process (called "incarnation") is performed by
the XNJS component. The second IDB function is advertising target system capabilities and
allowing to check client resource requests against these.

The IDB is a (set of) XML files, which by default is called simpleidb.

For reference, the current XML schema for the IDB can be read from the SVN repository.

http://unicore-dev.zam.kfa-juelich.de/documentation/rus-accounting-1.5.0
http://sourceforge.net/projects/unicore-life/files/
http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/schema/idb.xsd

UNICORE/X Manual 40

8.1 Defining the IDB file

The IDB file is defined by the property "XNJS.idbfile", which must point to a file on the UNI-
CORE/X machine which is readable by the UNICORE/X process. For security reasons, it
should NOT be writable.

8.2 Using an IDB directory

While the IDB can be put into a single file, it is often convenient to use multiple files. In this
case, the property "XNJS.idbfile" points to a directory. This directory should contain

• a single, mandatory, "main" IDB file

• optionally, multiple XML files containing application definitions (see below)

• optionally, multiple XML files containing execution environment definitions (see here Sec-
tion 8.8)

The main IDB file consists of an "IDB" XML element:

<idb:IDB xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/idb">
...

</idb:IDB

while application files use the Application element

<idb:IDBApplication xmlns:idb="http://www.fz-juelich.de/unicore/ ←↩
xnjs/idb">

...
</idb:IDBApplication>

and the execution environment files look like this:

<ee:ExecutionEnvironment xmlns:ee="http://www.unicore.eu/unicore/ ←↩
jsdl-extensions">

...
</ee:ExecutionEnvironment>

8.3 Applications

The most important functionality of the IDB is providing executables for abstract applications.
An abstract application is given by name and version, whereas an executable application is
given in terms of executable, arguments and environment variables.

UNICORE/X Manual 41

8.3.1 Simple applications

Here is an example entry for the "Date" application on a UNIX system

<idb:IDBApplication xmlns:idb="http://www.fz-juelich.de/unicore/ ←↩
xnjs/idb">

<idb:ApplicationName>Date</idb:ApplicationName>
<idb:ApplicationVersion>1.0</idb:ApplicationVersion>
<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl-posix">
<jsdl:Executable>/bin/date</jsdl:Executable>

</jsdl:POSIXApplication>
</idb:IDBApplication>

As can be seen, "Date" is simply mapped to "/bin/date".

8.3.2 Arguments

Command line arguments are specified using <Argument> tags:

<idb:IDBApplication xmlns:idb="http://www.fz-juelich.de/unicore/ ←↩
xnjs/idb">

<idb:ApplicationName>LS</idb:ApplicationName>
<idb:ApplicationVersion>1.0</idb:ApplicationVersion>
<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl-posix">
<jsdl:Executable>/bin/ls</jsdl:Executable>
<jsdl:Argument>-l</jsdl:Argument>
<jsdl:Argument>-t</jsdl:Argument>

</jsdl:POSIXApplication>
</idb:IDBApplication>

This would result in a command line "/bin/ls -l -t".

8.3.3 Conditional Arguments

The job submission from a client usually contains environment variables to be set when run-
ning the application. It often happens that a certain argument should only be included if a
corresponding environment variable is set. This can be achieved by using "conditional argu-
ments" in the incarnation definition. Conditional arguments are indicated by a quastion mark
"?" appended to the argument value:

<idb:IDBApplication>
<idb:ApplicationName>java</idb:ApplicationName>
<idb:ApplicationVersion>1.5.0</idb:ApplicationVersion>
<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl-posix">

UNICORE/X Manual 42

<jsdl:Executable>/usr/bin/java</jsdl:Executable>
<jsdl:Argument>-cp$CLASSPATH?</jsdl:Argument>
<!-- other args omitted for clarity -->

</jsdl:POSIXApplication>
</idb:IDBApplication>

Here, <jsdl:Argument>-cp$CLASSPATH?</jsdl:Argument> is an optional argu-
ment.

If a job submission now includes a Environment variable named CLASSPATH

<jsdl:Environment name="CLASSPATH">myjar.jar</jsdl:Environment>

the incarnated commandline will be "/usr/bin/java -cp$CLASSPATH . . . ", otherwise just "/us-
r/bin/java . . . ".

This allows very flexible incarnations.

8.3.4 More

For more details about IDB application definitions, please consult the detailed application defi-
nition guide Section 8.6.

8.4 TargetSystemProperties

The TargetSystemProperties element contains information about a site’s available resources, as
well as additional information that should be published to clients.

8.4.1 Textual information

Simple strings can be entered into the IDB which are then accessible client-side. This is very
useful for conveying system-specifics to client code and also to users. These text-info strings
are entered into the IDB as a subtag of the TargetSystemProperties tag

Here is an example

<idb:TargetSystemProperties>

<!-- text infos -->
<idb:Info Name="Administator email">admin@site.org</idb:Info>

</idb:TargetSystemProperties>

These pieces of information are accessible client side as part of the target system properties.

UNICORE/X Manual 43

8.4.2 Resources

Resources of a target system are specified using the Resource tag defined in the JSDL specifi-
cation (see http://www.gridforum.org/documents/GFD.56.pdf). It allows to specify things like
number of nodes, CPUtime (per CPU), CPUs per node, total number of CPUs, etc.

These capabilities are specified giving an exact value and a range, for example:

<jsdl:Exact>3600</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1</jsdl:LowerBound>
<jsdl:UpperBound>86400</jsdl:UpperBound>

</jsdl:Range>

The Range gives upper and lower bounds, where as the Exact value is interpreted as the DE-
FAULT, when the client does not request anything specific. If the Exact value is specified, the
resource is part of the site’s default resource set.

There exist a number of standard settings. You may choose to not specify some of them, if they
do not make sense on your system. For example, some sites do not allow the user to explicitely
select nodes and processors per node, but only "total number of CPUs".

• jsdl:IndividualCPUTime : The wall clock time.

• jsdl:IndividualCPUCount : The number of CPUs per node

• jsdl:IndividualPhysicalMemory : The amount of memory per node (in bytes)

• jsdl:TotalResourceCount : The number of nodes.

• jsdl:TotalCPUCount : The total number of CPUs.

8.4.3 "Total CPUs" vs. "Nodes and CPUs per node"

Users can specify the number of processors either as just "total number of CPUs", or they can
give a value for both "nodes" and "CPUs per node". If both are given, the values containing
more information (i.e. nodes + CPUs per node) are used.

Similarly, if the administrator specifies both possibilities with a default value in the IDB, the
nodes + CPUs per node will have precedence.

8.4.4 CPU Architecture

JSDL allows to advertise the CPU architecture.

<jsdl:CPUArchitecture>
<jsdl:CPUArchitectureName>x86</jsdl:CPUArchitectureName>

</jsdl:CPUArchitecture>

http://www.gridforum.org/documents/GFD.56.pdf

UNICORE/X Manual 44

Due to restrictions imposed by the JSDL standard, the valid values for the CPUArchitecture-
Name element are limited to a fixed list, some useful values are "x86", "x86_64", "sparc",
"powerpc", and "other". For the full list please consult the JSDL standard.

8.4.5 Operating system

JSDL allows to advertise the operating system that the site runs.

<!-- O/S -->
<jsdl:OperatingSystem>

<jsdl:OperatingSystemType>
<jsdl:OperatingSystemName>LINUX</jsdl:OperatingSystemName>

</jsdl:OperatingSystemType>
<jsdl:OperatingSystemVersion>2.6.13</jsdl: ←↩

OperatingSystemVersion>
<jsdl:Description>Ubuntu Linux</jsdl:Description>

</jsdl:OperatingSystem>

Due to restrictions imposed by the JSDL standard, the valid values for the OperatingSystem-
Name element are limited to a fixed list, some useful values are "LINUX", "SOLARIS", "AIX",
"MACOS", "WIN_NT", "WINDOWS_XP", "FREE_BSD" and "UNKNOWN". For the full list
please consult the JSDL standard.

8.4.6 Other types of resources

Most HPC sites have special settings that cannot be mapped to the generic JSDL elements
shown in the previous section. Therefore UNICORE 6 includes a mechanism to allow sites to
specify their own system settings and allow users to set these using the Grid middleware.

Custom resources are described in this section Section 8.10.

8.4.7 File systems

File systems such as SCRATCH can be defined in the IDB as well, for example

<idb:TargetSystemProperties>

<!-- SCRATCH file system -->
<idb:Filesystem Name="SCRATCH" IncarnatedPath="/work/$USER" />

</idb:TargetSystemProperties>

The job’s environment will then contain a variable

SCRATCH="/work/$USER" ; export SCRATCH

JSDL data staging elements can contain the FileSystemName tag to indicate that the file should
NOT be staged into the job working directory, but into the named file system.

UNICORE/X Manual 45

8.4.8 Example Resources section

This example includes the elements defining capabilities, and some informational elements like
CPUArchitecture and operating system info.

<idb:TargetSystemProperties>
<jsdl:Resources xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl">
<jsdl:CPUArchitecture>
<jsdl:CPUArchitectureName>x86</jsdl:CPUArchitectureName>

</jsdl:CPUArchitecture>

<!-- O/S -->
<jsdl:OperatingSystem>
<jsdl:OperatingSystemType>
<jsdl:OperatingSystemName>LINUX</jsdl:OperatingSystemName>

</jsdl:OperatingSystemType>
<jsdl:OperatingSystemVersion>2.6.13</jsdl: ←↩

OperatingSystemVersion>
<jsdl:Description>A free UNIX clone</jsdl:Description>

</jsdl:OperatingSystem>

<!-- cpu time (per cpu) in seconds -->
<jsdl:IndividualCPUTime>
<jsdl:Exact>3600</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1</jsdl:LowerBound>
<jsdl:UpperBound>86400</jsdl:UpperBound>

</jsdl:Range>
</jsdl:IndividualCPUTime>

<!-- Nodes -->
<jsdl:TotalResourceCount>
<jsdl:Exact>1.0</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1.0</jsdl:LowerBound>
<jsdl:UpperBound>16.0</jsdl:UpperBound>

</jsdl:Range>
</jsdl:TotalResourceCount>

<!-- CPUs per node -->
<jsdl:IndividualCPUCount>
<jsdl:Exact>8.0</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1.0</jsdl:LowerBound>
<jsdl:UpperBound>8.0</jsdl:UpperBound>

</jsdl:Range>
</jsdl:IndividualCPUCount>

<!-- total CPUs -->

UNICORE/X Manual 46

<jsdl:TotalCPUCount>
<jsdl:Exact>8.0</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1.0</jsdl:LowerBound>
<jsdl:UpperBound>128.0</jsdl:UpperBound>

</jsdl:Range>
</jsdl:TotalCPUCount>

<!-- Memory per node (bytes) -->
<jsdl:IndividualPhysicalMemory>
<jsdl:Exact>268435456</jsdl:Exact>
<jsdl:Range>
<jsdl:LowerBound>1024576</jsdl:LowerBound>
<jsdl:UpperBound>1073741824</jsdl:UpperBound>

</jsdl:Range>
</jsdl:IndividualPhysicalMemory>

</jsdl:Resources>
</idb:TargetSystemProperties>

8.5 Script templates

If you need to modify the scripts that are generated by UNICORE/X and sent to the TSI, you
can achieve this using two entries in the IDB.

<idb:IDB xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/idb">

<!-- Templates -->
<idb:SubmitScriptTemplate>
#!/bin/sh
#COMMAND
#RESOURCES
#SCRIPT
</idb:SubmitScriptTemplate>

<idb:ExecuteScriptTemplate>
#!/bin/sh
#COMMAND
#RESOURCES
#SCRIPT
</idb:ExecuteScriptTemplate>

<!-- rest of IDB omitted -->

</idb:IDB>

The SubmitScriptTemplate is used for batch job submission, the ExecuteScriptTemplate is used
for everything else (e.g. creating directories, resolving user’s home, etc)

UNICORE/X Manual 47

UNICORE/X generates the TSI script as follows:

• the "#COMMAND" entry will be replaced by the action for the TSI, e.g. "#TSI_SUBMIT".

• the "#RESOURCES" will be replaced by the resource requirements, e.g. "#TSI_NODES=. . . "

• the "#SCRIPT" is the user script

Modifying these templates can be used to perform special actions, such as loading modules,
or changing the shell (but use something compatible to sh). For example, to add some special
directory to the path for user scripts submitted in batch mode, you could use

<idb:IDB xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/idb">

<!-- Templates -->
<idb:SubmitScriptTemplate>
#!/bin/sh
#COMMAND
#RESOURCES
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/openmpi-2.1/lib; export ←↩

LD_LIBRARY_PATH
PATH=$PATH:/opt/openmpi-2.1/bin; export PATH
#SCRIPT
</idb:SubmitScriptTemplate>

<!-- rest of IDB omitted -->

</idb:IDB>

8.5.1 Properties

In the IDB file, XNJS properties can be specified, for example the command locations identified
by property names starting with "CLASSICTSI."

<idb:IDB xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/idb">
<!--- rest of IDB omitted -->
<idb:Property name="..."

value="..."/>
</idb:IDB

8.6 More on the IDB Application definitions

Simple application definitions and application arguments have already been covered in the pre-
vious section [?]. Here, more details are presented.

UNICORE/X Manual 48

8.6.1 Pre and post-commands

Sometimes it is useful to be able to execute one or several commands before or after the ex-
ecution of an application. For example, to add directories to the path, or perform some pre-
processing. The IDB allows to specify these using the PreCommand and PostCommand tags.

For example

<idb:IDBApplication>
<idb:ApplicationName>java</idb:ApplicationName>
<idb:ApplicationVersion>1.5.0</idb:ApplicationVersion>
<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl-posix">
<jsdl:Executable>/usr/bin/java</jsdl:Executable>
<jsdl:Argument>-cp$CLASSPATH?</jsdl:Argument>
<!-- other args omitted for clarity -->

</jsdl:POSIXApplication>
<idb:PreCommand>PATH=$PATH:/opt/myapp/bin ; export PATH</idb: ←↩

PreCommand>
<idb:PreCommand>/opt/example/aquire_license</idb:PreCommand>
<idb:PostCommand>/opt/example/release_license</idb:PostCommand>

</idb:IDBApplication>

These commands will be executed as part of the user’s job script.

8.6.2 Interactive execution when using a batch system

If an application should not be submitted to the batch system, but be run on the login node (i.e.
interactively), a flag in the IDB can be set:

<idb:IDBApplication>
<idb:ApplicationName>SomeApp</idb:ApplicationName>
<idb:ApplicationVersion>1.0</idb:ApplicationVersion>

<!-- instructs TSI to run the application interactively -->
<idb:PreferInteractive>true</idb:PreferInteractive>

<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/jsdl ←↩
/2005/11/jsdl-posix">

<!-- other args omitted for clarity -->
</jsdl:POSIXApplication>

</idb:IDBApplication>

Note
This should only be used for very short-running tasks, since UNICORE cannot track the status
of such a task. It is simply forked by the TSI, and UNICORE will just assume it is finished after
a short while.

UNICORE/X Manual 49

8.7 Application metadata (simple)

For client components it is very useful to have a description of an application in terms of its
arguments. This allows for example the "Generic" GridBean in the UNICORE Rich client to
automatically build a nice GUI for the application.

You can optionally attach metadata to an applications arguments.

<jsdl:Argument Description="Verbose Execution"
Type="boolean"
ValidValues="true false"
DependsOn="..."
Excludes="..."
IsEnabled="false"
IsMandatory="false">+v$VERBOSE?</jsdl:Argument>

Some metadata is inferred automatically, such as the argument name (VERBOSE in the example
above).

The meaning of the attributes should be fairly obvious.

• the Description attribute contains a human-readable description of the argument

• the Type attribute can have the values "string", "boolean", "int", "double", "filename" or
"choice". In the case of "choice", the ValidValues attribute is used to specify the list
of valid values. The type filename is used to specify that this is an input file for the
application, allowing clients to enable special actions for this.

• The MimeType attribute allows to specify the mime-types of an input or output file as a
comma-separated list. This can be used by smart clients, for example to check the viability
of workflows.

• The ValidValues attribute is used to limit the range of valid values, depending on the
Type of the argument. The processing of this attribute is client-dependent. The UNICORE
Rich Client supports intervals for the numeric types, and Java regular expressions for the
string types.

• DependsOn and Excludes are space-separated lists of argument names to control depen-
dencies. For example, a "VERBOSE and a "QUIET" attribute should exclude each other.

• IsMandatory (values: true or false) specifies if a parameter MUST be provided.

• IsEnabled (values: true or false) is intended to tell clients that the parameter should ini-
tially be enabled in the GUI.

8.7.1 Application metadata (complex)

You can also add metadata as XML to the IDB entry, which allows you to add your custom
metadata:

UNICORE/X Manual 50

The XML schema can be found online at http://unicore.svn.sourceforge.net/viewvc/unicore/-
jsdl-xmlbeans/trunk/src/main/schema/jsdl-unicore.xsd

Currently the XML metadata only encompass argument metadata, similar to the "simple" meta-
data described above. However, custom metadata can be added in case an application requires
it.

Here is a simple example.

<idb:IDBApplication>
<idb:ApplicationName>SomeApp</idb:ApplicationName>
<idb:ApplicationVersion>1.0</idb:ApplicationVersion>

<!-- metadata -->
<u6:Metadata xmlns:u6="http://www.unicore.eu/unicore/jsdl- ←↩

extensions">
<!-- example argument-->
<u6:Argument>
<u6:Name>PRECISION</u6:Name>
<u6:ArgumentMetadata>
<u6:Type>choice</u6:Type>
<u6:Description>Precision of the computation</u6: ←↩

Description>
<u6:ValidValue>Lax</u6:ValidValue>
<u6:ValidValue>Reasonable</u6:ValidValue>
<u6:ValidValue>Precise</u6:ValidValue>
<u6:ValidValue>Pedantic</u6:ValidValue>
<u6:IsMandatory>true</u6:IsMandatory>

</u6:ArgumentMetadata>
</u6:Argument>
<!-- any custom XML can be added as well -->
<!-- ... -->

</u6:Metadata>
</idb:IDBApplication>

The XML supports the Type, Description, MimeType, IsMandatory, DependsOn, Excludes and
ValidValue elements, with the same semantics as described above.

8.8 Execution Environments

Execution environments are an advanced feature that allows you to configure the way an ex-
ecutable is executed in a more detailed and user-friendly fashion. A common scenario is the
configuration of an environment for parallel execution of a program, such as MPI.

A typical simple MPI invocation looks like this

/usr/local/bin/openmpi -np 4 ./my_mpi_program [my_program_arguments ←↩
]

http://unicore.svn.sourceforge.net/viewvc/unicore/jsdl-xmlbeans/trunk/src/main/schema/jsdl-unicore.xsd
http://unicore.svn.sourceforge.net/viewvc/unicore/jsdl-xmlbeans/trunk/src/main/schema/jsdl-unicore.xsd

UNICORE/X Manual 51

but of course there are many more possible arguments to the MPI command, which also depend
on the local installation. By using a predefined execution environment, a UNICORE user need
not know all the details, but can set up her job in a simple fashion.

This document covers the options that are available to configure execution environments in the
IDB.

• XML Schema for the execution environments: the current XML schema for the execution
environment specification can be read from the SVN repository.

8.9 IDB definition of execution environments

The server-side setup of an execution environment is by adding an XML entry into the IDB.
A simple environment might be used to run a user command using time. This example shows
every possible option. You might want to consult the man page of time.

<idb:IDB xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/idb">

<!-- sample execution environment definition in the IDB -->
<ee:ExecutionEnvironment xmlns:ee="http://www.unicore.eu/unicore/ ←↩

jsdl-extensions">
<ee:Name>TIME</ee:Name>
<ee:Version>1.0</ee:Version>
<ee:Description>Runs the user’s command using the ’time’ tool, ←↩

measuring the used CPU time.</ee:Description>
<ee:ExecutableName>/usr/bin/time</ee:ExecutableName>
<ee:CommandlineTemplate>#EXECUTABLE #ARGS #USERCOMMAND # ←↩

USERARGS</ee:CommandlineTemplate>
<ee:Argument>
<ee:Name>Output</ee:Name>
<ee:IncarnatedValue>-o</ee:IncarnatedValue>
<ee:ArgumentMetadata>
<ee:Type>string</ee:Type>
<ee:Description>Write the resource use statistics to a FILE ←↩

instead of to the standard error stream</ee: ←↩
Description>

</ee:ArgumentMetadata>
</ee:Argument>
<ee:Option>
<ee:Name>Verbose</ee:Name>
<ee:IncarnatedValue>-v</ee:IncarnatedValue>
<ee:OptionMetadata>
<ee:Description>Enable verbose mode</ee:Description>

</ee:OptionMetadata>
</ee:Option>
<ee:PreCommand>
<ee:Name>PRINT_START_TIME</ee:Name>
<ee:IncarnatedValue>echo "Started at $(date)"</ee: ←↩

IncarnatedValue>

http://unicore.svn.sourceforge.net/viewvc/unicore/jsdl-xmlbeans/trunk/src/main/schema/jsdl-unicore.xsd

UNICORE/X Manual 52

<ee:OptionMetadata>
<ee:Description>Explicitely print the start time</ee: ←↩

Description>
</ee:OptionMetadata>

</ee:PreCommand>
<ee:PostCommand>
<ee:Name>PRINT_FINISH_TIME</ee:Name>
<ee:IncarnatedValue>echo "Finished at $(date)"</ee: ←↩

IncarnatedValue>
<ee:OptionMetadata>
<ee:Description>Explicitely print the finishing time</ee: ←↩

Description>
</ee:OptionMetadata>

</ee:PostCommand>
</ee:ExecutionEnvironment>

</idb:IDB>

If a client now submits a job including a request for the "TIME" execution environment (in
the JSDL Resources element), UNICORE will generate a shell script that wraps the user
command in the "time" invocation. Let’s say the job request includes the "Output" argument,
the "Verbose" option and both precommand and postcommand:

<!-- sample execution environment request sent from client to ←↩
server -->

<ee:ExecutionEnvironment xmlns:ee="http://www.unicore.eu/unicore/ ←↩
jsdl-extensions">

<ee:Name>TIME</ee:Name>
<ee:Version>1.0</ee:Version>
<ee:Argument>
<ee:Name>Output</ee:Name>
<ee:Value>time_profile</ee:IncarnatedValue>

</ee:Argument>
<ee:Option>
<ee:Name>Verbose</ee:Name>

</ee:Option>
<ee:PreCommand>
<ee:Name>PRINT_START_TIME</ee:Name>

</ee:PreCommand>
<ee:PostCommand>
<ee:Name>PRINT_FINISH_TIME</ee:Name>

</ee:PostCommand>
</ee:ExecutionEnvironment>

The script generated by UNICORE will look like this (leaving out some standard things):

#!/bin/bash

...

UNICORE/X Manual 53

echo "Started at $(date)"
/usr/bin/time -o time_profile -v /path/to/my_user_application
echo "Finished at $(date)"

...

In the following the various XML tags that are available are explained in detail.

• ExecutableName : This is the name of the executable that "defines" the environment.

• CommandlineTemplate : To control the exact commandline that is created, this template
is used.

The default template is

#EXECUTABLE #ARGS #USERCOMMAND #USERARGS

where

• #EXECUTABLE is the executable defined using ExecutableName

• #ARGS are the arguments and options for the executable

• #USERCOMMAND is the user’s executable

• #USERARGS are the arguments to the user’s executable

• Argument : the Argument elements are used to create arguments to the executable. They
have several subtags.

• Name is the name of the argument.

• IncarnatedValue is the argument as used in the commandline.

• ArgumentMetadata are described below.

• ArgumentMetadata : This element allows to describe an Argument in more detail. It has
the following subtags

• Type the argument type. Valid values are "string", "boolean", "int", "float" and "choice"

• Description is a human-friendly description

• Default a possible default value

• ValidValue tags are used to denote possible values

• DependsOn denotes other arguments that this argument requires

• Excludes denotes other arguments that clash with this argument

• PreCommand : This tag denotes a command that is executed immediately before the actual
executable. Its subtags are the same as for Option.

• PostCommand : This tag denotes a command that is executed after the actual execution. Its
subtags are the same as for PreCommand.

UNICORE/X Manual 54

8.10 Custom resource definitions

Most sites (especially in HPC) have special settings that cannot be mapped to the generic JSDL
elements shown in the previous section. Therefore UNICORE 6 includes a mechanism to allow
sites to specify their own system settings and allow users to set these using the Grid middleware.

This requires two things

• Custom resource definitions in the IDB

• Customisation of the TSI Submit.pm module

If this mechanism is not flexible enough for your needs, consider looking at dynamic incarnation
which is described here Section 8.11.

8.10.1 The IDB

You can insert <Resource> elements into the Resources section, an example follows.

<jsdl:Resources>

<idb:Resource xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/ ←↩
idb">

<idb:Name>TasksPerNode</idb:Name>
<idb:Type>int</idb:Type>
<idb:Description>The number of tasks per node. If larger than ←↩

32, the node will run in SMT mode.</idb:Description>
<idb:Min>1</idb:Min>
<idb:Max>64</idb:Max>
<idb:Default>32</idb:Default>

</idb:Resource>

</jsdl:Resources>

Apart from the numeric types <int> or <double>, there are the <string>, <choice> and <boolean>
types. The <choice> allows you to specify a set of allowed values. This is useful for example
to specify a selection of batch queues, or a selection of network topologies.

For example, defining queues could look like this:

<jsdl:Resources>

<idb:Resource xmlns:idb="http://www.fz-juelich.de/unicore/xnjs/ ←↩
idb">

<idb:Name>Queue</idb:Name>
<idb:Type>choice</idb:Type>
<idb:Description>The batch queue to use</idb:Description>
<idb:Default>normal</idb:Default>
<idb:AllowedValue>normal</idb:AllowedValue>

UNICORE/X Manual 55

<idb:AllowedValue>fast</idb:AllowedValue>
<idb:AllowedValue>small</idb:AllowedValue>
<idb:AllowedValue>development</idb:AllowedValue>

</idb:Resource>

</jsdl:Resources>

This example defines four available queues, with the "normal" one being used by default.

Note
The resource name "Queue" is recognized automatically by UNICORE and mapped to the
correct TSI_QUEUE parameter when sending the job to the TSI.

Note
The resource name "Project" (i.e. the "TSI_PROJECT" TSI parameter) is mapped to the
account parameter of the batch system, for example "-A" in the case of Torque.

8.10.2 Submitted JSDL

Clients can now send a special element in the JSDL job, for example requesting a certain value
for the "TasksPerNode" setting:

<jsdl:JobDescription>
...

<jsdl:Resources>

<jsdl-u:ResourceRequest xmlns:jsdl-u="http://www.unicore. ←↩
eu/unicore/jsdl-extensions">

<jsdl-u:Name>TasksPerNode</jsdl-u:Name>
<jsdl-u:Value>64</jsdl-u:Value>

</jsdl-u:ResourceRequest>

</jsdl:Resources>
</jsdl:JobDescription>

or for the queue example:

<jsdl:JobDescription>
...

<jsdl:Resources>

<jsdl-u:ResourceRequest xmlns:jsdl-u="http://www.unicore. ←↩
eu/unicore/jsdl-extensions">

<jsdl-u:Name>Queue</jsdl-u:Name>
<jsdl-u:Value>development</jsdl-u:Value>

UNICORE/X Manual 56

</jsdl-u:ResourceRequest>

</jsdl:Resources>
</jsdl:JobDescription>

8.10.3 TSI request

The UNICORE/X server will send the following snippet to the TSI:

#!/bin/sh
#TSI_SUBMIT
...
#TSI_SSR_TASKSPERNODE 64.0
....

As you can see, a special TSI command tag "#TSI_SSR_TASKSPERNODE" has been added.
Now the remaining step is to have the TSI Submit.pm module has to parse this properly, and
generate the correct batch system command.

Note that every name of a custom resource defined in IDB is converted to upper case and spaces
are replaced with the underscore character "_".

8.11 Tweaking the incarnation process

In UNICORE the term incarnation refers to the process of changing the abstract and probably
universal grid request into a sequence of operations local to the target system. The most fun-
damental part of this process is creation of the execution script which is invoked on the target
system (usually via a batch queuing subsystem (BSS)) along with an execution context which
includes local user id, group, BSS specific resource limits.

UNICORE provides a flexible incarnation model - most of the magic is done automatically by
TSI scripts basing on configuration which is read from the IDB. IDB covers script creation
(using templates, abstract application names etc). Mapping of the grid user to the local user is
done by using UNICORE Attribute Sources like XUUDB or UVOS.

In rare cases the standard UNICORE incarnation mechanism is not flexible enough. Typically
this happens when the script which is sent to TSI should be tweaked in accordance to some
runtime constraints. Few examples may include:

• Administrator wants to set memory requirements for all invocations of the application X
to 500MB if user requested lower amount of memory (as the administrator knows that the
application consumes always at least this amount of memory).

• Administrator wants to perform custom logging of suspected requests (which for instance
exceed certain resource requirements threshold)

• Administrator need to invoke a script that create a local user’s account if it doesn’t exist.

UNICORE/X Manual 57

• Administrator wants to reroute some requests to a specific BSS queue basing on the arbitrary
contents of the request.

• Administrator wants to set certain flags in the script which is sent to TSI when a request came
from the member of a specific VO. Later those flags are consumed by TSI and are used as
submission parameters.

Those and all similar actions can be performed with the Incarnation tweaking subsystem. Note
that though it is an extremely powerful mechanism, it is also a very complicated one and con-
figuring it is error prone. Therefore always try to use the standard UNICORE features (like
configuration of IDB and attribute sources) in the first place. Treat this incarnation tweaking
subsystem as the last resort!

To properly configure this mechanism at least a very basic Java programming language familiar-
ity is required. Also remember that in case of any problems contacting the UNICORE support
mailing list can be the solution.

8.11.1 Operation

It is possible to influence incarnation in two ways:

• BEFORE-SCRIPT it is possible to change all UNICORE variables which are used to produce
the final TSI script just before it is created and

• AFTER-SCRIPT later on to change the whole TSI script.

The first BEFORE-SCRIPT option is suggested: it is much easier as you have to modify some
properties only. In the latter much more error prone version you can produce an entirely new
script or just change few lines of the script which was created automatically. It is also possible
to use both solutions simultaneously.

Both approaches are configured in a very similar way by defining rules. Each rule has its
condition which triggers it and list of actions which are invoked if the condition was evaluated
to true. The condition is in both cases expressed in the same way. The difference is in case
of actions. Actions for BEFORE-SCRIPT rules can modify the incarnation variables but do
not return a value. Actions for AFTER-SCRIPT read as its input the original TSI script and
must write out the updated version. Theoretically AFTER-SCRIPT actions can also modify the
incarnation variables but this doesn’t make sense as those variables won’t be used.

8.11.2 Basic configuration

By default the subsystem is turned off. To enable it you must perform two simple things:

• Add the XNJS.incarnationTweakerConfig property to the XNJS config file. The
value of the property must provide a location of the file with dynamic incarnation rules.

UNICORE/X Manual 58

• Add some rules to the file configured above.

The following example shows how to set the configuration file to the value conf/incarnationTweaker.xml:

...
<eng:Properties>

...
<eng:Property name="XNJS.incarnationTweakerConfig" value="conf/ ←↩

incarnationTweaker.xml"/>
...

</eng:Properties>
...

The contents of the rules configuration file must be created following this syntax:

<?xml version="1.0" encoding="UTF-8"?>
<tns:incarnationTweaker xmlns:tns="http://eu.unicore/xnjs/ ←↩

incarnationTweaker"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:beforeScript>
<!-- Here come BEFORE-SCRIPT rules-->

</tns:beforeScript>

<tns:afterScript>
<!-- And here AFTER-SCRIPT rules-->

</tns:afterScript>
</tns:incarnationTweaker>

8.11.3 Creating rules

Each rule must conform to the following syntax:

<tns:rule finishOnHit="false">
<tns:condition> <!-- Here comes the rule’s ←↩

condition --> </tns:condition>

<tns:action type="ACTION-TYPE">ACTION-DEFINITION</ ←↩
tns:action>

<!-- More actions may follow -->
</tns:rule>

The rule’s attribute finishOnHit is optional, by default its value is false. When it is present
and set to true then this rule becomes the last rule invoked if it’s condition was met.

You can use as many actions as you want (assuming that at least one is present), actions are
invoked in the order of appearance.

UNICORE/X Manual 59

SpEL and Groovy

Rule conditions are always boolean expressions of the Spring Expression Language (SpEL). As
SpEL can be also used in some types of actions it is the most fundamental tool to understand.

Full documentation is available here: http://static.springsource.org/spring/docs/3.0.0.M3/spring-
framework-reference/html/ch07.html

The most useful is the section 7.5: http://static.springsource.org/spring/docs/3.0.0.M3/spring-
framework-reference/html/ch07s05.html

Actions can be also coded using the Groovy language. You can find Groovy documentation at
Groovy’s web page: http://groovy.codehaus.org

Creating conditions

Rule conditions are always Spring Expression Language (SpEL) boolean expressions. To create
SpEL expressions, the access to the request-related variables must be provided. All variables
which are available for conditions are explained in the dynamic incarnation context Section 8.12
section.

Creating BEFORE-SCRIPT actions

There are the following action types which you can use:

• spel (the default which is used when type parameter is not specified) treats action value
as SpEL expression which is simply evaluated. This is useful for simple actions that should
modify value of one variable.

• script treats action value as a SpEL expression which is evaluated and which should return
a string. Evaluation is done using SpEL templating feature with \${ and } used as variable
delimiters (see section 7.5.13 in Spring documentation for details). The returned string is
used as a command line which is invoked. This action is extremely useful if you want to run
an external program with some arguments which are determined at runtime. Note that if you
want to cite some values that may contain spaces (to treat them as a single program argument)
you can put them between double quotes ". Also escaping characters with "\" works.

• groovy treats action value as a Groovy script. The script is simply invoked and can manip-
ulate the variables.

• groovy-file works similarly to the groovy action but the Groovy script is read from the
file given as the action value.

All actions have access to the same variables as conditions; see the dynamic incarnation context
Section 8.12 section for details.

http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07.html
http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07.html
http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07s05.html
http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07s05.html
http://groovy.codehaus.org

UNICORE/X Manual 60

Creating AFTER-SCRIPT actions

There are the following action types which you can use:

• script (the default which is used when type parameter is not specified) treats action value
as SpEL expression which is evaluated and which should return a string. Evaluation is done
using SpEL templating feature with \${ and } used as variable delimiters (see section 7.5.13
in Spring documentation for details). The returned string used as a command line which is
invoked. The invoked application gets as its standard input the automatically created TSI
script and is supposed to return (using standard output) the updated script which shall be used
instead. This action is extremely useful if you want to run an external program with some
arguments which are determined at runtime. Note that if you want to cite some values that
may contain spaces (to treat them as a single program argument) you can put them between
double quotes ". Also escaping characters with \ works.

• groovy treats action value as a Groovy script. The script has access to one special variable
input of type Reader. The original TSI script is available from this reader. The groovy
script is expected to print the updated TSI script which shall be used instead of the original
one.

• groovy-file works the same as the groovy action but the Groovy script is read from the
file given as the action value.

All actions have access to the same variables as conditions; see the section on dynamic incar-
nation context Section 8.11 for details.

8.11.4 Final notes

• The rules configuration file is automatically reread at runtime.

• If errors are detected in the rules configuration file upon server startup then the whole subsys-
tem is disabled. If errors are detected at runtime after an update then old version of rules is
continued to be used. Always check the log file!

• When rules are read the system tries to perform a dry run using an absolutely minimal exe-
cution context. This can detect some problems in your rules but mostly only in conditions.
Actions connected to conditions which are not met won’t be invoked. Always try to submit a
real request to trigger your new rules!

• Be careful when writing conditions: it is possible to change incarnation variables inside your
condition - such changes also influence incarnation.

• It is possible (from the version 6.4.2 up) to stop the job processing from the rule’s action. To
do so with the grovy or grovy-file action, throw the de.fzj.unicore.xnjs.ems.ExecutionException
object from the script. In case of the script action, the script must exit with the exit sta-
tus equal to 10. The first 1024 bytes of its standard error are used as the message which is
included in the ExecutionException. This feature works both for the BEFORE- and AFTER-
SCRIPT actions. It is not possible to achieve this with the spel action type.

UNICORE/X Manual 61

8.11.5 Complete examples and hints

Invoking a logging script for users who have the specialOne role. Note that the script is
invoked with two arguments (role name and client’s DN). As the latter argument may contain
spaces we surround it with quotation marks.

<?xml version="1.0" encoding="UTF-8"?>
<tns:incarnationTweaker xmlns:tns="http://eu.unicore/xnjs/ ←↩

incarnationTweaker"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:beforeScript>
<tns:rule>

<tns:condition>client.role.name == " ←↩
specialOne"</tns:condition>

<tns:action type="script">/opt/scripts/ ←↩
logSpecials.sh ${client.role.name} "${ ←↩
client.distinguishedName}"</tns:action>

</tns:rule>
</tns:beforeScript>

<tns:afterScript>
</tns:afterScript>

</tns:incarnationTweaker>

A more complex example. Let’s implement the following rules:

• The Application with a IDB name HEAVY-APP will always get 500MB of memory require-
ment if user requested less or nothing.

• All invocations of an executable /usr/bin/serial-app are made serial, i.e. the number of re-
quested nodes and CPUs are set to 1.

• For all requests a special script is called which can create a local account if needed along with
appropriate groups.

• There is also one AFTER-RULE. It invokes a groovy script which adds an additional line to
the TSI script just after the first line. The line is added for all invocations of the /usr/bin/serial-
app program.

The realization of the above logic can be written as follows:

<?xml version="1.0" encoding="UTF-8"?>
<tns:incarnationTweaker xmlns:tns="http://eu.unicore/xnjs/ ←↩

incarnationTweaker"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:beforeScript>
<tns:rule>

UNICORE/X Manual 62

<tns:condition>app.applicationName == " ←↩
HEAVY-APP" and (resources. ←↩
individualPhysicalMemory == null

or resources. ←↩
individualPhysicalMemory ←↩
< 500000000)</tns ←↩

:condition>
<tns:action>resources. ←↩

individualPhysicalMemory=500000000</tns ←↩
:action>

</tns:rule>
<tns:rule>

<tns:condition>app.executable == "/usr/bin/ ←↩
serial-app" and resources. ←↩
individualCPUCount != null</tns: ←↩
condition>

<tns:action>resources.individualCPUCount ←↩
=1</tns:action>

<tns:action>resources.totalResourceCount ←↩
=1</tns:action>

</tns:rule>
<tns:rule>

<tns:condition>true</tns:condition>
<tns:action type="script">/opt/ ←↩

addUserIfNotExists.sh ${client.xlogin. ←↩
userName} ${client.xlogin.encodedGroups ←↩
}</tns:action>

</tns:rule>
</tns:beforeScript>

<tns:afterScript>
<tns:rule>

<tns:condition>app.executable == "/usr/bin/ ←↩
serial-app"</tns:condition>

<tns:action type="groovy">
int i=0;
input.eachLine() { line ->
if(i==1) {

println("#TSI_MYFLAG=SERIAL");
println(line);

} else
println(line);

i++;
}

</tns:action>
</tns:rule>

</tns:afterScript>
</tns:incarnationTweaker>

UNICORE/X Manual 63

Remember that some characters are special in XML (e.g. < and &). You have to encode them
with XML entities (e.g. as < and > respectively) or put the whole text in a CDATA
section. A CDATA section starts with "<![CDATA[" and ends with "]]>". Example:

<tns:condition><!CDATA[resources.individualPhysicalMemory < ←↩
500000000]]></tns:condition>

Note that usually it is better to put Groovy scripts in a separate file. Assuming that you placed
the contents of the groovy AFTER-action above in a file called /opt/scripts/filter1.g then the
following AFTER-SCRIPT section is equivalent to the above one:

<tns:afterScript>
<tns:rule>

<tns:condition>app.executable == "/usr/bin/ ←↩
serial-app"</tns:condition>

<tns:action type="groovy-file">/opt/scripts ←↩
/filter1.g</tns:action>

</tns:rule>
</tns:afterScript>

It is possible to fail the job when a site-specific condition is met. E.g. with the groovy script:

<tns:afterScript>
<tns:rule>

<tns:condition>SOME - CONDITION</tns: ←↩
condition>

<tns:action type="groovy">
throw new de.fzj.unicore.xnjs.ems.ExecutionException(de.fzj.unicore ←↩

.xnjs.util.ErrorCode.ERR_EXECUTABLE_FORBIDDEN, "Description for ←↩
the user");

</tns:action>
</tns:rule>

</tns:afterScript>

To check your rules when you develop them, it might be wise to enable DEBUG logging on in-
carnation tweaker facility. To do so add the following setting to the logging.properties
file:

log4j.logger.unicore.xnjs.IncarnationTweaker=DEBUG

You may also want to see how the final TSI script looks like. Most often TSI places it in a file
in job’s directory. However if the TSI you use doesn’t do so (e.g. in case of the NOBATCH
TSI) you can trigger logging of the TSI script on the XNJS side. There are two ways to do it.
You can enable DEBUG logging on the unicore.xnjs.tsi.TSIConnection facility:

log4j.logger.unicore.xnjs.tsi.TSIConnection=DEBUG

This solution is easy but it will produce also much more of additional information in you log
file. If you want to log TSI scripts only, you can use AFTER-SCRIPT rule as follows:

UNICORE/X Manual 64

<tns:afterScript>
<tns:rule>

<tns:condition>true</tns:condition>
<tns:action type="groovy">

org.apache.log4j.Logger log=org.apache.log4j.Logger.getLogger(" ←↩
unicore.xnjs.RequestLogging");

log.info("Dumping TSI request:");
input.eachLine() { line ->

println(line);
log.info(" " + line);

}
</tns:action>

</tns:rule>
</tns:afterScript>

The above rule logs all requests to the normal Unicore/X log file with the INFO level.

8.12 Incarnation tweaking context

Dynamic incarnation tweaker conditions and also all actions are provided with access to all
relevant data structures which are available at XNJS during incarnation.

The following variables are present:

• Client client provides access to authorization material: xlogin, roles, attributes etc.
NOTE: In general it makes sense to modify only the xlogin field in the Client object, the rest
are available only for information purposes. E.g. there is a queue field, but changing it in
the incarnation tweaker rules will have no effect on incarnation. Use the queue property
available from resources variable instead. You can read client’s queue to check what
queue settings were defined in attribute sources for the user. The source

• ApplicationInfo app provides access to information about application to be executed
(both abstract IDB name and actual target system executable). You can change the values here
to influence the incarnation. Remember that changing the user’s DN here won’t influence
authorization layer as authorization was already done for each request at this stage. The
source

• ResourcesWrapper resources provides access to resource requirements of the appli-
cation. The source

• ExecutionContext ec provides access to the application environment: interactive set-
ting, environment variables, working directory and stdin/out/err files. The source

• IncarnatedExecutionEnvironment execEnv provides access to the template which
is used to produce the final script. In most cases only manipulating pre- and post- commands
makes sense. The source

http://unicore.svn.sourceforge.net/viewvc/unicore/securityFramework/securityLibrary/trunk/src/main/java/eu/unicore/security/Client.java?view=markup
http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/tsi/ApplicationInfo.java?view=markup
http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/tsi/ApplicationInfo.java?view=markup
http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/incarnation/ResourcesWrapper.java?view=markup
http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/ems/ExecutionContext.java?view=markup
http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/jsdl/IncarnatedExecutionEnvironment.java?view=markup

UNICORE/X Manual 65

• IncarnationDataBase idb provides an (read only) access to the contents of the IDB.
The source

Each of the available variables has many properties that you can access. It is best to check
source code of the class to get a complete list of them. You can read property X if it has a
corresponding Java public Type getX() method. You can set a property Y if it has a
corresponding Java public void setY(Type value) method.

8.12.1 Simple example

Let’s consider the variable client. In the Client class you can find methods:

public String getDistinguishedName()

public void setDistinguishedName(String distinguishedName)

This means that the following SpEL condition is correct:

client.distinguishedName != null and client.distinguishedName == " ←↩
CN=Roger Zelazny,C=US"

Note that it is always a safe bet to check first if the value of a property is not null.

Moreover you can also set the value of the distinguished name in an action (this example is
correct for both SpEL and Groovy):

client.distinguishedName="CN=Roger Zelazny,C=US"

8.12.2 Advanced example

Often the interesting property is not available directly under one of the above enumerated vari-
ables. In case of the client variable one example may be the xlogin property holding the
list of available local accounts and groups and the ones which were selected among them.

Example of condition checking the local user id:

client.xlogin.userName != null and client.xlogin.userName == "roger ←↩
"

Setting can also be done in an analogous way. However always pay attention to the fact that not
always setting a value will succeed. E.g. for Xlogin it is possible to set a selected xlogin only
to one of those defined as available (see contents if the respective setSelectedLogin()
method). Therefore to change local login to a fixed value it is best to just override the whole
XLogin object like this (SpEL):

client.xlogin=new eu.unicore.security.Xlogin(new String[] {"roger ←↩
"}, new String{"users"})

http://unicore.svn.sourceforge.net/viewvc/unicore/xnjs/trunk/xnjs-module-core/src/main/java/de/fzj/unicore/xnjs/jsdl/IncarnationDataBase.java?view=markup

UNICORE/X Manual 66

8.12.3 Resources variable

As it is bit difficult to manipulate the resources requirements object which is natively used by
UNICORE, it is wrapped to provide an easier to use interface. The only exposed properties are
those requirements which are actually used by UNICORE when the TSI script is created.

You can access the low level (and complicated) original resources object through the resources.allResources
property.

9 The UNICORE metadata service

UNICORE supports metadata management on a per-storage basis. This means, each storage
instance (for example, the user’s home, or a job working directory) has its own metadata man-
agement service instance.

Metadata management is separated into two parts: a front end (which is a web service) and a
back end.

The front end service allows the user to manipulate and query metadata, as well as manually
trigger the metadata extraction process. The back end is the actual implementation of the meta-
data management, which is pluggable and can be exchanged by custom implementations. The
default implementation has the following properties

• Apache Lucene for indexing,

• Apache Tika for extracting metadata,

• metadata is stored as files directly on the storage resource, in files with a special ".metadata"
suffix

• the index files are stored on the UNICORE/X server, in a configurable directory

9.1 Enabling the metadata service

First, UNICORE’s service configuration file <CONF>/wsrflite.xml needs to be edited and the
following service definition added in the <services> section:

<!-- enable the metadata management service -->
<service name="MetadataManagement" wsrf="true" persistent="true">
<interface class="de.fzj.unicore.uas.MetadataManagement"/>
<implementation class="de.fzj.unicore.uas.metadata. ←↩

MetadataManagementHomeImpl"/>
</service>

You will also need to define which implementation should be used. This is done via properties,
which can be defined either in <CONF>/wsrflite.xml or <CONF>/uas.config.

In uas.config, set:

UNICORE/X Manual 67

#
Metadata manager settings
#

uas.metadata.manager.class=eu.unicore.uas.metadata. ←↩
LuceneMetadataManager

#
use Tika for extracting metadata
(if you do not want this, remove this property)
#
uas.metadata.parser.class=org.apache.tika.parser.AutoDetectParser

#
Lucene index directory:
#
Configure a directory on the UNICORE/X machine where index
files should be placed
#
uas.metadata.lucene.directory=/tmp/data/luceneIndexFiles/

9.2 Configuring the metadata service

No options currently. Future options will include

• disabling metadata management on storages

• configuring auto-extraction of metadata

10 Authorization back-end (PDP) guide

The authorization process in UNICORE/X requires that nearly all operations must be authorized
prior to execution (exceptions may be safely ignored).

UNICORE allows to choose which authorization back-end is used. The module which is re-
sponsible for this operation is called Policy Decision Point (PDP). You can choose one among
already available PDP modules or even develop your own engine.

Local PDPs use a set of policy files to reach an authorisation decision, remote PDPs query a
remote service.

Local UNICORE PDPs use the XACML language to express the authorization policy. The
XACML policy language is introduced in the Guide to XACML security policies Section 11.
You can also review this guide if you want to have a deeper understanding of the authorization
process.

UNICORE/X Manual 68

10.1 Basic configuration

There are three options in the uas.config file which are relevant to all PDPs:

• uas.security.accesscontrol (values: true or false) This boolean property can
be used to completely turn off the authorization. This guide makes sense only if this option is
set to true. Except for test scenarios this should never be switched off, otherwise every user
can in principle access all resources on the server.

• uas.security.accesscontrol.pdp (value: full class name) This property is used to
choose which PDP module is being used.

• uas.security.accesscontrol.pdp.config (value: file path) This property pro-
vides a location of a configuration file of the selected PDP.

10.2 Available PDP modules

10.2.1 XACML 2.0 PDP

The implementation class of this module is: eu.unicore.uas.pdp.local.LocalHerasafPDP
so to enable this module use the following configuration in uas.config:

uas.security.accesscontrol.pdp.config=<CONFIG_DIR>/xacml2.conf
uas.security.accesscontrol.pdp=eu.unicore.uas.pdp.local. ←↩

LocalHerasafPDP

The configuration file content is very simplistic as it is enough to define only few options:

The directory where XACML 2.0 policy files are stored
localpdp.directory=conf/xacml2Policies

Wildcard expression to select actual policy files from the ←↩
directory defined above

localpdp.filesWildcard=*.xml

Combining algorithm for the policies. You can use the full XACML ←↩
id or its last part.

localpdp.combiningAlg=first-applicable

The policies from the localpdp.directory are always evaluated in alphabetical order, so
it is good to name files with a number. By default the first-applicable combining algorithm is
used and UNICORE policy is stored in two files: 01coreServices.xml and 99finalDeny.xml. The
first file contains the default access policy, the latter a single fall through deny rule. Therefore
you can put your own policies using an additional file in file named e.g. 50localRules.xml.

The policies are reloaded whenever you change (or touch) the configuration file of this PDP,
e.g. like this:

touch conf/xacml2.conf

UNICORE/X Manual 69

10.2.2 XACML 1.x PDP

The implementation class of this module is: eu.unicore.uas.pdp.localsun.LocalSunPDP
so to enable this module use the following configuration in uas.config:

uas.security.accesscontrol.pdp.config=conf/xacml.config
uas.security.accesscontrol.pdp=eu.unicore.uas.pdp.localsun. ←↩

LocalSunPDP

This module is the one that was the only available option in UNICORE prior to release 6.4.0

The rules are contained in one or more policy files as listed in the xacml.config configuration
file. However note that in case of this legacy implementation it mostly doesn’t make sense to
use more then one file as it not possible to control the combining algorithm (which would be
only-one-applicable). Therefore the configuration file is rather absolutely constant:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://sunxacml.sourceforge.net/schema/config-0.3"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
defaultPDP="pdp" defaultAttributeFactory="attr"
defaultCombiningAlgFactory="comb" defaultFunctionFactory=" ←↩

func">
<pdp name="pdp">

<attributeFinderModule class="com.sun.xacml.finder.impl. ←↩
CurrentEnvModule"/>

<attributeFinderModule class="com.sun.xacml.finder.impl. ←↩
SelectorModule"/>

<policyFinderModule class="com.sun.xacml.finder.impl. ←↩
FilePolicyModule">

<list>
<string>conf/security_policy.xml</string>

</list>
</policyFinderModule>

</pdp>
<attributeFactory name="attr" useStandardDatatypes="true"/>
<combiningAlgFactory name="comb" useStandardAlgorithms="true"/>
<functionFactory name="func" useStandardFunctions="true">

</functionFactory>
</config>

In case you modified the policy file(s), you can force a reload into the running server by
"touch"ing the xacml.conf configuration file. For example, under Unix you can execute

touch conf/xacml.conf

Opening the file in an editor and saving it will also do the trick.

UNICORE/X Manual 70

10.2.3 Remote SAML/XACML 2.0 PDP (Argus PDP)

This PDP allows for outsourcing authorization decision to the remote PDP service. Typically
the Argus PDP is used for this purpose but in principle any PDP which implements the SAML
XAML Authorization Query Protocol can be used.

The implementation class of this module is: eu.unicore.uas.pdp.argus.ArgusPDP
so to enable this module use the following configuration in uas.config:

uas.security.accesscontrol.pdp.config=<CONFIG_DIR>/argus.config
uas.security.accesscontrol.pdp=eu.unicore.uas.pdp.argus.ArgusPDP

The PDP configuration is very simple as it is only required to provide the Argus endpoint and
query timeout (in milliseconds).

arguspdp.serverAddress=https://argus.exampledomain.org:8152/authz
arguspdp.queryTimeout=15000

You can use both http and https addresses. In the latter case server’s certificate is used to make
the connection.

If the remote PDP can not be contacted due to any reason the authorization decision is always
deny.

11 Guide to XACML security policies

XACML authorization policies need not to be modified on a day-to-day basis when running
the UNICORE server. The most common tasks as banning or allowing users can be performed
very easily using UNICORE Attribute Sources like XUUDB or UVOS. This guide is intended
for advanced administrators who want to change the non-standard authorization process and for
developers who want to provide authorization policies for services they create.

The XACML standard is a powerful way to express fine grained access control. The idea is to
have XML policies describing how and by whom actions on resources can be performed. A
very readable introduction into XACML can be found with Sun’s XACML implementation.

There are several versions of XACML policy language. Currently UNICORE supports both 1.x
and 2.0 versions. Those are quite similar and use same concepts, however note that syntax is a
bit different. In this guide we provide examples using XACML 2.0. The same examples in the
legacy XACML 1.1 format are available below Section 11.5.

UNICORE allows to choose one of several authorization back-end implementations called Pol-
icy Decision Points (PDP). Among others you can decide whether to use local XACML 1.x
policies or local XACML 2.0 policies. The authorization section Section 10 shows how to
choose and configure each of the available PDPs.

In UNICORE terms XACML is used as follows. Before each operation (i.e. execution of a web
service call), an XACML request is generated, which currently includes the following attributes:

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://sunxacml.sourceforge.net/guide.html#xacml

UNICORE/X Manual 71

• the name of the service being accessed (e.g. JobManagementService)

• the name of the method being invoked (used as the "action" in XACML terms)

• the distinguished name of the user making the request

• the role of the user as retrieved from an attribute source (XUUDB/UVOS/. . .)

The request is processed by the server and checked against a (set of) policies. Policies contain
rules that can either deny or permit a request, using a powerful set of functions.

11.1 Policy sets and combining of results

Typically, the authorization policy is stored in one file. However as this file can get long and
unmanageable sometimes it is better to split it into several ones. This additionally allows to
easily plug additional policies to the existing authorization process. In UNICORE, this feature
is implemented in the XAML 2.0 PDP.

When policies are split in multiple files each of those files must contain (at least one) a separate
policy. A PDP must somehow combine result of evaluation of multiple policies. This is done
by so-called policy combining algorithm. The following algorithms are available, the part after
last colon describes behaviour of each:

urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered- ←↩
permit-overrides

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit- ←↩
overrides

urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered- ←↩
deny-overrides

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny- ←↩
overrides

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first- ←↩
applicable

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:only-one- ←↩
applicable

Each policy file can contain one or more rules, so it is important to understand how possible
conflicts are resolved. The so-called combining algorithm for the rules in a single policy file is
specified in the top-level Policy element.

The XACML (from version 1.1 onwards) specification defines six algorithms: permit-overrides,
deny-overrides, first-applicable, only-one-applicable, ordered-permit-overrides and ordered-deny-
overrides. For example, to specify that the first matching rule in the policy file is used to make
the decision, the Policy element must contain the following "RuleCombiningAlgId" attribute:

<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicyId="ExamplePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule- ←↩

combining-algorithm:first-applicable">

UNICORE/X Manual 72

The full identifiers of the combining algorithms are as follows:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny- ←↩
overrides

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit- ←↩
overrides

urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered-deny- ←↩
overrides

urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered- ←↩
permit-overrides

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first- ←↩
applicable

11.2 Role-based access to services

A common use case is to allow/permit access to a certain service based on a user’s role This can
be achieved with the following XACML rule, which describes that a user with role "admin" is
given access to all service.

<Rule RuleId="Permit:Admin" Effect="Permit">
<Description> Role "admin" may do anything. </Description>
<Target />
<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

string-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:string-one-and-only">
<SubjectAttributeDesignator

DataType="http://www.w3.org/2001/XMLSchema# ←↩
string" AttributeId="role" />

</Apply>
<AttributeValue DataType="http://www.w3.org/2001/ ←↩

XMLSchema#string">admin</AttributeValue>
</Apply>

</Condition>
</Rule>

If the access should be limited to a certain service, the Target element must contain a service
identifier, as follows. In this example, access to the DataService is granted to those who have
the data-access role.

<Rule RuleId="rule2" Effect="Permit">
<Description>Allow users with role "data-access" access to ←↩

the DataService</Description>
<Target>
<Resources>

<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0: ←↩

function:anyURI-equal">

UNICORE/X Manual 73

<AttributeValue DataType="http://www.w3.org/2001/ ←↩
XMLSchema#anyURI">DataService</AttributeValue>

<ResourceAttributeDesignator AttributeId="urn:oasis ←↩
:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www. ←↩
w3.org/2001/ ←↩
XMLSchema#anyURI" ←↩
MustBePresent=" ←↩
true" />

</ResourceMatch>
</Resource>

</Resources>
</Target>

<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

string-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:string-one-and-only">
<SubjectAttributeDesignator DataType="http://www.w3. ←↩

org/2001/XMLSchema#string" AttributeId="role" />
</Apply>

<AttributeValue DataType="http://www.w3.org/2001/ ←↩
XMLSchema#string">data-access</AttributeValue>

</Apply>
</Condition>

By using the <Action> tag in policies, web service access can be controlled on the method level.
In principle, XACML supports even control based on the content of some XML document, such
as the incoming SOAP request. However this is not yet used in UNICORE/X.

11.3 Limiting access to services to the service instance owner

Most service instances (corresponding e.g. to jobs, or files) should only ever be accessed by
their owner. This rule is expressed as follows

<Rule RuleId="Permit:AnyResource_for_its_owner" Effect="Permit">
<Description> Access to any resource is granted for its ←↩

owner </Description>
<Target />
<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

x500Name-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:x500Name-one-and-only">
<SubjectAttributeDesignator AttributeId="urn:oasis: ←↩

names:tc:xacml:1.0:subject:subject-id"

UNICORE/X Manual 74

DataType="urn:oasis:names ←↩
:tc:xacml:1.0:data- ←↩
type:x500Name"

MustBePresent="true" />
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:x500Name-one-and-only">
<ResourceAttributeDesignator
AttributeId="owner" DataType="urn:oasis:names:tc: ←↩

xacml:1.0:data-type:x500Name"
MustBePresent="true" />

</Apply>
</Apply>

</Condition>
</Rule>

11.4 More details on XACML use in UNICORE/X

To get more detailed information about XACML policies (e.g. to get the list of all available
functions etc) consult the XACML specification. To get more information on XACML use in
UNICORE/X it is good to set the logging level of security messages to DEBUG:

log4j.logger.unicore.security=DEBUG

You will be able to read what input is given to the XACML engine and what is the detailed
answer. Alternatively, ask on the support mailing list.

11.5 Policy examples in XACML 1.1 syntax

This section contains the same examples as are contained in the previous section, but using
XACML 1.x syntax. For more detailed discussion of each example please refer to the previous
section.

Policy header with first-applicable combining algorithm.

<Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicyId="ExamplePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule- ←↩

combining-algorithm:first-applicable">

A user with role "admin" is given access to all service.

<Rule RuleId="rule1" Effect="Permit">
<Description>Allow users with role "admin" access to any service</ ←↩

Description>
<Target>

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
mailto:unicore-support@lists.sf.net

UNICORE/X Manual 75

<Subjects>
<AnySubject/>

</Subjects>
<Resources>
<AnyResource/>

</Resources>
<Actions>
<AnyAction/>

</Actions>
</Target>

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩
string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string- ←↩
one-and-only">

<SubjectAttributeDesignator DataType="http://www.w3.org/2001/ ←↩
XMLSchema#string" AttributeId="role" />

</Apply>
<!-- here is the role value -->
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema# ←↩

string">admin</AttributeValue>
</Condition>
/Rule>

Defining which resource access is defined with the Target element:

<Rule RuleId="rule2" Effect="Permit">
<Description>Allow users with role "data-access" access to the ←↩

DataService</Description>
<Target>
<Subjects>
<AnySubject/>

</Subjects>
<Resources>
<!-- specify the data service -->
<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0: ←↩

function:anyURI-equal">
<AttributeValue DataType="http://www.w3.org/2001/ ←↩

XMLSchema#anyURI">DataService</AttributeValue>
<ResourceAttributeDesignator DataType="http://www.w3.org ←↩

/2001/XMLSchema#anyURI"
AttributeId="urn:oasis:names ←↩

:tc:xacml:1.0:resource: ←↩
resource-id"/>

</ResourceMatch>
</Resource>
</Resources>
<Actions>
<AnyAction/>

</Actions>

UNICORE/X Manual 76

</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

string-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string- ←↩

one-and-only">
<SubjectAttributeDesignator DataType="http://www.w3.org/2001/ ←↩

XMLSchema#string" AttributeId="role" />
</Apply>
<!-- here is the role value -->
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema# ←↩

string">data-access</AttributeValue>
</Condition>
/Rule>

Allowing access for the resource owner:

<Rule RuleId="PermitJobManagementServiceForOwner" Effect="Permit">
<Description>testing</Description>
<Target>

<Subjects> <AnySubject/> </Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0: ←↩

function:anyURI-equal">
<AttributeValue DataType="http://www.w3.org/2001/ ←↩

XMLSchema#anyURI">JobManagementService</ ←↩
AttributeValue>

<ResourceAttributeDesignator AttributeId="urn:oasis:names ←↩
:tc:xacml:1.0:resource:resource-id" DataType="http:// ←↩
www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true ←↩
"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions> <AnyAction/> </Actions>

</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

x500Name-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

x500Name-one-and-only">
<SubjectAttributeDesignator AttributeId="urn:oasis:names:tc: ←↩

xacml:1.0:subject:subject-id" DataType="urn:oasis:names: ←↩
tc:xacml:1.0:data-type:x500Name" MustBePresent="true"/>

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

x500Name-one-and-only">
<ResourceAttributeDesignator AttributeId="owner" DataType=" ←↩

urn:oasis:names:tc:xacml:1.0:data-type:x500Name" ←↩
MustBePresent="true"/>

</Apply>

UNICORE/X Manual 77

</Condition>
</Rule>

12 Proxy certificate support

Note
First, a warning: proxies are not really supported in UNICORE, except for a very limited set
of usage scenarios. Many "normal" things will not work with proxy certificates. Thus, only use
this feature if really strictly necessary. No feature in UNICORE requires proxies

Proxies are supported in two ways in UNICORE

• transport-layer security and authentication via the UNICORE gateway

• enable usage of GSI based software such as GridFTP

This document provides information and configuration snippets for the second usage scenario.
Information about the first case can be found on the SourceForge Wiki page EnableProxySup-
port.

12.1 TLS proxy support

Using proxies for TLS means that the proxy certificate is used by the client to establish the SSL
connection. You must use a gateway with the appropriate configuration for this to work. On the
UNICORE/X side it is necessary to set a property in uas.config :

uas.authoriser.proxysupport=true

12.2 GSI tools support

Your UNICORE client needs to create and send the proxy. Both UCC and URC support this,
please consult your client documentation for the details.

12.2.1 Storing the proxy in the job directory

First, you need to enable a handler on the web services engine. In the unicorex/conf/wsr-
flite.xml, add a handler definition on the target system service:

https://sourceforge.net/apps/mediawiki/unicore/index.php?title=EnableProxySupport
https://sourceforge.net/apps/mediawiki/unicore/index.php?title=EnableProxySupport

UNICORE/X Manual 78

<service name="TargetSystemService" wsrf="true" persistent="true ←↩
">

...
<!-- additional proxy extraction handler definition -->
<handler type="in" class="de.fzj.unicore.uas.security. ←↩

ProxyCertInHandler"/>
</service>

The handler can also be added for all services like this:

<!-- add proxy extract handler on all services.
This needs to be done *before* the service definitions -->

<globalHandler type="in" class="de.fzj.unicore.uas.security. ←↩
ProxyCertInHandler"/>

<service name="...">
</service>

...

Secondly, you need to modify the XNJS configuration to enable a component that stores the
proxy in the format expected by GSI (no encryption, PEM format).

So open the XNJS config file (e.g. conf/xnjs.xml) and edit the ProcessingChain section.

<eng:ProcessingChain actionType="JSDL" jobDescriptionType="{ ←↩
http://schemas.ggf.org/jsdl/2005/11/jsdl}JobDefinition">

<!-- stores proxy to uspace -->
<eng:Processor>de.fzj.unicore.uas.xnjs. ←↩

ProxyCertToUspaceProcessor</eng:Processor>
<!-- usual entries -->
<eng:Processor>de.fzj.unicore.xnjs.jsdl.JSDLProcessor</eng: ←↩

Processor>
<eng:Processor>de.fzj.unicore.xnjs.ems.processors.UsageLogger</ ←↩

eng:Processor>
</eng:ProcessingChain>

12.2.2 Configuring gridftp

Using GridFTP basically works out of the box, if the client sends a proxy and you have Globus
installed on your TSI login node. However it can be customised using two settings in the XNJS
config file ("xnjs.xml" or "xnjs_legacy.xml").

<!-- name / path of the executable -->
<eng:Property name="globus-url-copy" value="/usr/local/bin/ ←↩

globus-url-copy"/>
<!-- additional parameters for globus-url-copy -->
<eng:Property name="globus-url-copy.parameters" value=""/>

UNICORE/X Manual 79

13 XtreemFS support

XtreemFS is a distributed filesystem (see http://www.xtreemfs.org).

XtreemFS can be mounted locally at more than one UNICORE site, making it desirable to have
an optimized way of moving files used in UNICORE jobs into and out of XtreemFS.

To achieve this, UNICORE supports a special URL scheme "xtreemfs://" for data staging (i.e.
moving data into the job directory prior to execution, and moveing data out of the job directory
after execution).

As an example, in their jobs users can write (using a UCC example):

{

Imports:
[
{ From: "xtreemfs://CN=test/test.txt", To: "infile", },

]

}

to have a file staged in from XtreemFS.

13.1 Site setup

At a site that wishes to support XtreemFS, two ways of providing access are possible. If
XtreemFS is mounted locally and accessible to the UNICORE TSI, it is required to define
the mount point in CONF/uas.config :

xtreemfs.mountpoint=...

In this case, data will simply be copied by the TSI.

If XtreemFS is not mounted locally, it is possible to define the URL of a UNICORE Storage
which provides access to XtreemFS

xtreemfs.url=https://...

In this case, data will be moved using the usual UNICORE file transfer mechanism.

14 SCP support

UNICORE supports file staging in/out using SCP, as defined in the Open Grid Forum’s "HPC
File staging profile" (GFD.135).

In the JSDL job description, an scp stage in is specified as follows:

http://www.xtreemfs.org

UNICORE/X Manual 80

<?xml version="1.0"?>
<p:JobDefinition xmlns:p="http://schemas.ggf.org/jsdl/2005/11/jsdl"

xmlns:jsdl-posix="http://schemas.ggf.org/jsdl ←↩
/2005/11/jsdl-posix">

<p:JobDescription>
<p:Application>
<jsdl-posix:POSIXApplication>
<jsdl-posix:Executable>/bin/ls</jsdl-posix:Executable>
<jsdl-posix:Argument>-l</jsdl-posix:Argument>

</jsdl-posix:POSIXApplication>
</p:Application>
<p:DataStaging>
<p:FileName>input</p:FileName>
<p:CreationFlag>overwrite</p:CreationFlag>
<p:Source>
<p:URI>scp://HOST:PORT:filepath</p:URI>

</p:Source>
<ac:Credential xmlns:ac="http://schemas.ogf.org/hpcp/2007/11/ ←↩

ac">
<wsse:UsernameToken xmlns:wsse="http://docs.oasis-open.org/ ←↩

wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd ←↩
">

<wsse:Username>***</wsse:Username>
<wsse:Password>***</wsse:Password>

</wsse:UsernameToken>
</ac:Credential>

</p:DataStaging>
</p:JobDescription>

</p:JobDefinition>

As you can see, username and password required to invoke SCP are embedded into the job
description, and the URL schema is "scp://"

14.1 Site setup

At a site that wishes to support SCP, the UNICORE server needs to be configured with the path
of an scp wrapper script that can pass the password to scp, if necessary.

If not already pre-configured during installation, you can configure this path manually in the
XNJS config file (or simpler in the IDB)

<!-- scp wrapper script -->
<eng:Property name="scp-wrapper.sh" value="/path/to/scp-wrapper ←↩

.sh"/>

UNICORE/X Manual 81

14.2 SCP wrapper script

The TSI 6.4.2 and later includes a script written in Perl (scp-wrapper.pl), depending on how you
installed UNICORE it is probably already pre-configured for you.

An alternative scp wrapper script written in TCL is provided in the "extras" folder of the core
server bundle, for your convenience it is reproduced here. It requires TCL and Expect. You
may need to modify the first line depending on how Expect is installed on your system.

#!/usr/bin/expect -f

this is a wrapper around scp
#
it automates the interaction required to enter the password.
#
Prerequisites:
The TCL Expect tool is used.
#
Arguments:
1: source, 2: target, 3: password

set source [lindex $argv 0]
set target [lindex $argv 1]
set password [lindex $argv 2]
set timeout 10

start the scp process
spawn scp "$source" "$target"

handle the interaction
expect {

"passphrase" {
send "$password\r"
exp_continue

} "password:" {
send "$password\r"
exp_continue

} "yes/no)?" {
send "yes\r"
exp_continue

} timeout {
puts "Timeout."
exit

} -re "." {
exp_continue

} eof {
exit

}
}

UNICORE/X Manual 82

Similar scripts may also be written in other scripting languages such as Perl or Python.

15 EMIR support

The EMI Registry (EMIR) is a new product developed in the EMI project. It is a service registry
and can be used from different middlewares such as ARC. UNICORE/X supports publishing
service information to EMIR (in addition to the usual UNICORE registries).

To enable publishing to EMIR, the UNICORE/X configuration file CONF/uas.config needs
to be adapted with the following entries.

enable publishing to EMIR
emiregistry.publishing.enable=true

set the publishing interval (seconds)
emiregistry.publishing.interval=120

initialise EMIR publishing at server start
uas.onstartup.99=eu.emi.emir.unicore.PublishingOnStartup

URL of the EMIR server
emiregistry.server.url=http(s)://<hostname>:<port>

	Getting started
	Prerequisites
	Installation

	Configuration of UNICORE/X
	Overview of the main configuration options
	Config file overview
	Settings for the UNICORE/X process (e.g. memory)
	Config file formats
	Integration of UNICORE/X into a UNICORE infrastructure
	Startup code
	Security
	Configuring the XNJS and TSI
	Configuring storages on TargetSystem instances
	Configuring the StorageFactory service
	HTTP proxy, timeout and web server settings

	Administration
	Controlling UNICORE/X memory usage
	Logging
	Administration and monitoring

	Security concepts in UNICORE/X
	Security concepts

	Configuring attribute sources
	UNICORE incarnation attributes
	XUUDB
	UVOS
	File attribute source
	Chained attribute source

	The UNICORE persistence layer
	Configuring the persistence layer
	Clustering

	Configuring the XNJS
	The UNICORE TSI
	Support for the UNICORE RUS Accounting

	The IDB
	Defining the IDB file
	Using an IDB directory
	Applications
	TargetSystemProperties
	Script templates
	More on the IDB Application definitions
	Application metadata (simple)
	Execution Environments
	IDB definition of execution environments
	Custom resource definitions
	Tweaking the incarnation process
	Incarnation tweaking context

	The UNICORE metadata service
	Enabling the metadata service
	Configuring the metadata service

	Authorization back-end (PDP) guide
	Basic configuration
	Available PDP modules

	Guide to XACML security policies
	Policy sets and combining of results
	Role-based access to services
	Limiting access to services to the service instance owner
	More details on XACML use in UNICORE/X
	Policy examples in XACML 1.1 syntax

	Proxy certificate support
	TLS proxy support
	GSI tools support

	XtreemFS support
	Site setup

	SCP support
	Site setup
	SCP wrapper script

	EMIR support

