
UFTP Standalone Client

UFTP STANDALONE CLIENT

UNICORE Team

Document Version: 1.0.0
Component Version: 1.0.0
Date: 30 09 2019

UFTP Standalone Client

Contents

1 Prerequisites 1

2 Installation 1

3 Basic Usage 2

4 Authentication 2

5 Examples 3

5.1 Listing a directory: the "ls" command . 3

5.2 Copying data: the "cp" command . 3

5.3 Synchronizing a file: the "sync" command . 7

5.4 Data sharing . 7

6 Troubleshooting 8

6.1 I get "Invalid server response 500" and "Exception. . . . Authentication failure" . 8

6.2 I get "Invalid server response 405 Unable to connect to server for listing" . . . 8

7 Getting support 8

UFTP Standalone Client 1

This is a commandline client for UFTP. It allows to

• list remote directories

• upload/download files

• sync files

• make remote directories

• delete remote files or directories

• manage shares and access shared data

The uftp client will connect to an authentication server (either a UNICORE/X server or a special
UFTP Auth server) to authenticate and then to the uftpd server for transferring data or making
a file operation.

The uftp client supports username/password authentication, OIDC token authentication and (on
UNIX) ssh-key authentication.

The uftp client supports multiple concurrent FTP connections for highly efficient data transfers
in high-performance environments and multiple TCP streams per connection for networks with
high delay.

1 Prerequisites

• Java 8 (OpenJDK, Oracle, IBM)

• Access to a UFTP authentication service and the corresponding UFTPD server. To use the
client, you need to know the address of the authentication service.

• You need valid credentials for the UFTP authentication service

• If the UFTP authentication service is configured to use SSH-key authentication, you cannot
use this client on Windows. We do not yet support SSH keys on Windows.

2 Installation

If you use the rpm or deb package, install it using the package manager of your Linux distribu-
tion.

If using the zip or tar archive, unpack it in a location of your choice. Add the bin directory to
your path. (Alternatively, you can copy the bin/uftp script to a directory that is already on your
path, in this case edit the script and setup the required directories.)

UFTP Standalone Client 2

3 Basic Usage

In this manual, we use the following format to indicate commands that you can type on the
command line:

$> some_command

and assume that the bin directory of the UFTP client is on your path.

Invoking uftp without any arguments,

$> uftp

will list the available commands.

Invoking

$> uftp <command> -h

will show help for a particular command

Invoking

$> uftp -version

will show version information.

4 Authentication

The uftp client supports various means of authentication. Depending on the server you want to
access, you can choose from

• user name with password

• user name with SSH key

• oidc-agent (see https://github.com/indigo-dc/oidc-agent)

• manual specification of the HTTP Authorization header value

To specify the remote username, use the "-u <username>" option, e.g.

$> uftp ls -u username https://localhost:9000/rest/auth/TEST:/home/ ←↩
demo/

The credentials can be given in multiple ways.

• directly using the "-u username:password"

https://github.com/indigo-dc/oidc-agent

UFTP Standalone Client 3

$> uftp ls -u username:password ...

• tell the uftp client to query the password interactively by additionally giving the "-P" option,
e.g.

$> uftp ls -P -u username ...

• If no password is given, the client will attempt to use your SSH key for authentication, this
has to be configured on the authentication server accordingly. If you have multiple keys, use
the "-i" option to select one, otherwise the default "~/.ssh/id_rsa" will be used. SSH agent is
supported, too.

• The very useful oidc-agent tool is also directly supported via -O <account_name>. In this
case no username is required.

$> uftp ls -O hbp ...

• Last not least you can directly specify a value for the HTTP Authorization header with the
"-A" option. This allows to use an OIDC bearer token for authorization, e.g. -A "Bearer
<oidc_token>". In this case no username is required.

$> uftp ls -A "Bearer <oidc_token>" ...

5 Examples

In the following examples, the authentication service is located at "localhost:9000/rest/auth/"
and the user name is username. Replace these values by the correct ones for your installation.

5.1 Listing a directory: the "ls" command

$> uftp ls -u username:password https://localhost:9000/rest/auth/ ←↩
TEST:/home/demo/

will list the /home/demo directory.

5.2 Copying data: the "cp" command

The cp command is used to copy local data to a remote server or vice versa. Remote loca-
tions are indicated by the "https://" prefix, and you need your user name, and the URL of the
authentication server.

It has a number of features, which will be shown in the following.

UFTP Standalone Client 4

5.2.1 Basic usage

Downloading a single file:

$> uftp cp -u username:password https://localhost:9000/rest/auth/ ←↩
TEST:/home/demo/test.data .

will download the /home/demo/test.data file to the current directory

Download files using wildcards:

$> uftp cp -u username:password https://localhost:9000/rest/auth/ ←↩
TEST:/home/demo/data/* .

will download all files in the /home/demo/test directory to the current directory

Similar commands work for upload.

Uploading files using wildcards:

$> uftp cp -u username:password "/data/*" https://localhost:9000/ ←↩
rest/auth/TEST:/home/demo/data/ .

Note that wildcards should be escaped to avoid the shell doing the expansion, which will also
work, but generally be slower.

The recurse flag, -r, tells uftp to also copy subdirectories.

5.2.2 Piping data

The "cp" command can read/write from the console streams, which is great for integrating
uftp into Unix pipes. The "-" is used as a special "file name" to indicate that data should be
read/written using the console.

5.2.3 Transferring with tar and zip

For example to tar the contents of a directory and upload the tar file using uftp:

$> tar cz dir/* | uftp cp -u username:password - https://localhost ←↩
:9000/rest/auth/TEST:/archive.tgz

With recent servers (UFTPD 2.7.0 and later), the UFTPD server can also unpack tar and zip
streams, this is very useful to efficiently transfer many small files. To enable this, add the -a
option, and DO NOT compress the tar stream.

$> tar c dir/* | uftp cp -u username:password -a - https:// ←↩
localhost:9000/rest/auth/TEST:/target_location/

or, using zip

UFTP Standalone Client 5

$> zip -r - dir/* | uftp cp -u username:password -a - https:// ←↩
localhost:9000/rest/auth/TEST:/target_location/

Note that zip will compress data, so might be slower or faster than tar, depending on network
bandwith and processing speed.

Similarly, "-" can be used to write data to standard output. As an example, consider this:

$> uftp cp -u username https://localhost:9000/rest/auth/TEST:/ ←↩
archive.tgz - | tar tz

Or use uftp to cat a remote file:

$> uftp cp -u username https://localhost:9000/rest/auth/TEST:/foo. ←↩
txt -

5.2.4 Using multiple FTP connections

When transferring large files (or many files) over a high-performance network, performance
can be vastly improved by using multiple FTP connections. (NOTE this is different from the
multiple TCP streams as set via the -n option).

Use the "-t" option to set the desired number of streams. Note that the server may have a limit
on the allowed number of concurrent connections, if in doubt, ask your server administrator.

$> uftp cp -u username:password -t 2 https://localhost:9000/rest/ ←↩
auth/TEST:/home/demo/* .

Files larger than a certain size will be transferred concurrently using more than one stream. This
threshold size is 512MB, but you can set it to a different value using the -T option. For example,
to split files larger than 1MB

$> uftp cp -u username:password -t 2 -T 1M https://localhost:9000/ ←↩
rest/auth/TEST:/home/demo/* .

5.2.5 Byte ranges

To copy just part of a file, a byte range can be given with the "-R" option. Counting starts at
"zero". For example to download only the first 1024 bytes of file (i.e. the range 0 - 1023), you
would do

$> uftp cp -u username -R 0-1023 https://localhost:9000/rest/auth/ ←↩
TEST:/home/demo/test.data .

As an additional feature, you can use the additional "-p" flag, which will write also only the
given range. For example

UFTP Standalone Client 6

$> uftp cp -u username -R 1024-2047-p https://localhost:9000/rest/ ←↩
auth/TEST:/home/demo/test.data .

will write bytes 1024-2047 of the remote file to the local file, starting at offset 1024. The local
file will have length 2048.

The same thing works for remote files!

5.2.6 Encryption and compression

The cp command supports the "-E" and "-C" options, which enable data encryption and com-
pression (during transfer) respectively. These work only if a single data stream is used.

Data encryption uses a symmetric algorithm, which nonetheless drastically lowers the perfor-
mance.

Data compression uses the gzip algorithm.

Compression and encryption can be combined.

5.2.7 Resuming a failed transfer

If a copy command was terminated prematurely, it can be resumed using the "-R" option. If the
"-R" option is present, the UFTP client will check if the target file exists, and will append only
the missing data.

So if your inital copy operation

$> uftp cp -u username https://localhost:9000/rest/auth/TEST:/home/ ←↩
demo/test.data .

did not finish correctly, you can resume it with

$> uftp cp -u username -R https://localhost:9000/rest/auth/TEST:/ ←↩
home/demo/test.data .

5.2.8 Performance testing

For performance testing, you can use /dev/zero and /dev/null as data source / sink. For example
to transfer 10 gigabytes of zeros from the remote server:

$> uftp cp -u username -B 0-10G https://localhost:9000/rest/auth/ ←↩
TEST:/dev/zero /dev/null

This can also be combined with the multi-connection option -t. To use two connections each
transferring 5 gigabytes

$> uftp cp -u username -B 0-10G -t 2 https://localhost:9000/rest/ ←↩
auth/TEST:/dev/zero /dev/null

UFTP Standalone Client 7

5.3 Synchronizing a file: the "sync" command

Currently, sync only supports single files, i.e. no directories or wildcards! The syntax is

$> uftp sync -u username <master> <slave>

For example, to synchronize a local file with a remote "master" file:

$> uftp sync -u username https://localhost:9000/rest/auth/TEST:/ ←↩
master.file local.file

To synchronize a remote file with a local "master" file:

$> uftp sync -u username master.file https://localhost:9000/rest/ ←↩
auth/TEST:/remote.file

5.4 Data sharing

Data sharing enables users to create access to their datasets for other users via UFTP, even if
those users do not have Unix-level access to the data.

Note
The data sharing features require additional server-side features, not all UFTP installations
support data sharing. You can check if a server has the sharing feature enabled by running
"uftp info"

5.4.1 Listing shares

$> uftp share --list -u username https://localhost:9000/rest/share/ ←↩
TEST

5.4.2 Creating or updating a share

A share consists of a target DN, a server-side path and the permissions.

For example to share "/data/public/somefile.pdf" with the user "CN=User"

$> uftp share -u username https://localhost:9000/rest/share/TEST " ←↩
CN=User" /data/public/somefile.pdf

You can use the following options to modify the default "read" access:

• --anonymous for anonymous access (careful!). In this case no DN is given.

• --write for write acces

• --delete to delete a share

UFTP Standalone Client 8

5.4.3 Downloading

To download a file that is shared with you, use the "get" command

$> uftp get -u username https://localhost:9000/rest/share/TEST/auth ←↩
:/data/public/somefile.pdf local_file.pdf

Currently this command does not support wildcards.

5.4.4 Uploading

To upload a file to a shared location (file or directory), use the "put" command

$> uftp put -u username data/*.pdf https://localhost:9000/rest/ ←↩
share/TEST/auth:/data/public/

6 Troubleshooting

This section lists and explains common error messages and their resolution.

6.1 I get "Invalid server response 500" and "Exception. . . . Authentication
failure"

Probably you gave a wrong username or password. Contact your site administrator if in doubt!

If using a password, make sure you give the "-P" flag.

6.2 I get "Invalid server response 405 Unable to connect to server for
listing"

Check the remote URL that you use. Maybe you have a typo in the "/rest/auth/<servername>"
part.

7 Getting support

UNICORE Website: http://www.unicore.eu

Support list: unicore-support@lists.sf.net

Developer’s list: unicore-devel@lists.sf.net

http://www.unicore.eu
mailto:unicore-support@lists.sf.net
mailto:unicore-devel@lists.sf.net

	Prerequisites
	Installation
	Basic Usage
	Authentication
	Examples
	Listing a directory: the "ls" command
	Copying data: the "cp" command
	Synchronizing a file: the "sync" command
	Data sharing

	Troubleshooting
	I get "Invalid server response 500" and "Exception…. Authentication failure"
	I get "Invalid server response 405 Unable to connect to server for listing"

	Getting support

