
UNICORE UFTPD server

UNICORE UFTPD SERVER

UNICORE Team

Document Version: 1.0.0
Component Version: 2.7.0
Date: 27 09 2019

UNICORE UFTPD server

Contents

1 UNICORE UFTP 1

1.1 UFTP features . 1

1.2 How does UFTP work . 2

2 Installation and use 3

2.1 Prerequisites . 3

2.2 C library for switching user ID . 3

2.3 Starting and stopping the UFTPD server . 4

2.4 Configuration parameters . 4

2.5 Protecting the Command socket . 6

2.6 Firewall configuration . 12

2.7 Logging . 12

3 UNICORE Integration 13

3.1 Configuring the UFTP service . 14

3.2 UFTPD servers with multiple interfaces . 14

3.3 Enabling data encryption . 15

3.4 Limiting bandwidth per transfer . 15

3.5 Disabling SSL on the command port . 15

3.6 Enabling "local" UFTP mode on the UNICORE/X server 15

4 Testing the UFTPD server 16

5 Performance measurement hints 16

UNICORE UFTPD server 1

This is the UFTPD user manual providing information on running and using the UNICORE
UFTP server uftpd. Please note also the following places for getting more information:

UNICORE Website: http://www.unicore.eu

Support list: unicore-support@lists.sf.net

Developer’s list: unicore-devel@lists.sf.net

UFTP issue tracker: https://sourceforge.net/p/unicore/uftp-issues

1 UNICORE UFTP

UFTP is a data streaming library and file transfer tool.

It can be used integrated into UNICORE, allowing to transfer data from client to server (and vice
versa), as well as providing data staging between UFTP-enabled UNICORE sites. UFTP can
also be used independently from UNICORE, requiring a authentication server and a standalone
UFTP client.

A full UFTP server installation consists of two parts

• the "uftpd" file server

• either a UNICORE/X server, or a standalone authentication service.

This manual covers the UFTP file server "uftpd".

1.1 UFTP features

• dynamic firewall port opening using a pseudo FTP connection. UFTPD requires only a single
open port.

• parallel input/output streams based on code from the JPARSS library, Copyright (c) 2001
Southeastern Universities Research Association, Thomas Jefferson National Accelerator Fa-
cility

• optional encryption of the data streams using a symmetric key algorithm

• optional compression of the data streams (using gzip)

• command port protected by SSL

• partial reads/writes to a file. If supported by the filesystem, multiple UFTP processes can thus
read/write a file in parallel (striping)

• supports efficient synchronization of single local and remote files using the rsync algorithm

• integrated into UNICORE clients for fast file upload and download

http://www.unicore.eu
mailto:unicore-support@lists.sf.net
mailto:unicore-devel@lists.sf.net
https://sourceforge.net/p/unicore/uftp-issues

UNICORE UFTPD server 2

• integrated with UNICORE servers for fast data staging and server-to-server file transfers

• standalone (non-UNICORE) client available

• data upload/download with curl or ftp possible in conjunction with the auth server

• written in Java

1.2 How does UFTP work

The UFTP file server, called uftpd, listens on two ports (which may be on two different network
interfaces):

• the command port receives control commands

• the listen port accepts data connections from clients.

The uftpd server is "controlled" (usually by UNICORE/X) via the command port, and re-
ceives/sends data directly from/to a client machine (which can be an actual user client machine
or another server). Data connnections are made to the "listen" port, which has to be accessible
from external machines. Firewalls have to treat the "listen" port as an FTP port.

A UFTP file transfer works as follows:

• the UNICORE/X server sends a request to the command port. This request notifies the
UFTPD server about the upcoming transfer and contains the following information

– a "secret", i.e. a one-time password which the client will use to authenticate itself

– the user and group id which uftpd should use to access files

– an optional key to encrypt/decrypt the data

– the client’s IP address

• the UFTPD server will now accept an incoming connection from the announced IP address,
provided the supplied "secret" matches the expectation.

• if everything is OK, an FTP session is created, and the client can use the FTP protocol to
open data connections, list files, transfer data etc. Firewall transversal will be automatic using
passive FTP (see below for alternatives like using a fixed port range).

• to access requested files, uftpd attempts to switch its user id to the requested one prior to
reading/writing the file. This uses a C library which is accessed from Java via the Java native
interface (JNI). See also the installation section below.

[NOTE] .IMPORTANT SECURITY NOTE

The UNICORE UFTPD server is running with root privileges. Make sure to read and understand
the section below on protecting the command socket. Otherwise, users logged on to the UFTPD
machine can possibly read and write other user’s files.

UNICORE UFTPD server 3

2 Installation and use

2.1 Prerequisites

• Java 8 (or later) runtime is required

• the server "listen" port needs to be accessible through your firewalls, declaring it an "FTP"
port (FTP connection tracking). Alternatively a fixed range of open ports can be configured
and used

• the UFTPD server needs access to the target file systems

• a server certificate for the UFTPD server is STRONGLY recommended for production use
(see the section on SSL below)

A functional UFTP installation requires either a full UNICORE/X server or the auth server.

NOTE ON PATHS
The UNICORE UFTPD server is distributed either as a platform independent and portable
tar.gz or zip bundle, or as an installable, platform dependent package such as RPM.
Depending on the installation package, the paths to various files are different. If installing
using distribution-specific package the following paths are used:

CONF=/etc/unicore/uftpd
SBIN=/usr/sbin
BIN=/usr/bin
LOG=/var/log/unicore/uftpd
LIB=/usr/share/unicore/uftpd/lib

If installing using the portable bundle, all UFTPD files are installed under a single directory.
Path prefixes are as follows, where INST is the directory where UFTPD was installed:

CONF=INST/conf
SBIN=INST/bin
BIN=INST/bin
LOG=INST/log
LIB=INST/lib

These variables (CONF, SBIN, BIN and LOG) are used throughout the rest of this manual.

2.2 C library for switching user ID

It may be required to re-compile the libuftp-unix.so library on your system. This library uses
the Java Native Interface (JNI). The version supplied with the distribution has been compiled on
a 64bit Linux system. The folder LIB/native contains the required headers and C source files, as
well as an exemplary makefile. Please edit the makefile, the following information is required:

UNICORE UFTPD server 4

• the base directory of our Java installation (JAVA_HOME)

• the location of platform-specific include files

• the location of the uftp-<version>.jar file (LIB)

Then, run "make install" to build the library, which will compile the code and install the library
into the LIB folder. If any problems occur during this procedure, please consult UNICORE
support.

2.3 Starting and stopping the UFTPD server

In the SBIN directory, start/stop and status scripts are provided:

• unicore-uftpd-start.sh starts the server

• unicore-uftpd-stop.sh stops the server

• unicore-uftpd-status.sh checks the server status

The parameters such as server host/port, control host/port, and others are configured in the
CONF/uftpd.conf file

In a production scenario with multiple users, the uftpd server needs to be started as root. This
is necessary to be able to set the correct file permissions.

2.4 Configuration parameters

The following variables can be defined in the configuration file (uftpd.conf):

SERVER_HOST : the interface where the server listens for ←↩
client data

connections

SERVER_PORT : the port where the server listens for ←↩
client data

connections

ADVERTISE_HOST : Advertise this server as having the ←↩
following IP in the

control connection. This is useful if the ←↩
server is behind

a NAT firewall and the public address is ←↩
different from

SERVER_HOST.

UNICORE UFTPD server 5

CMD_HOST : the interface where the server listens for ←↩
control commands

CMD_PORT : the port where the server listens for ←↩
control commands

SSL_CONF : File containing SSL settings for the ←↩
command port

ACL : File containing the list of server DNs ←↩
that are allowed

access to the command port

UFTPD_MEM : the maximum memory (Java heap size) ←↩
allocated to the UFTPD server

MAX_CONNECTIONS : the maximum number of concurrent control ←↩
connections per client IP

MAX_STREAMS : the maximum number of parallel TCP streams ←↩
per connection

BUFFER_SIZE : the size of the buffer (in kilobytes) for ←↩
reading/writing local files

PORT_RANGE : (optional) server-side port range in the ←↩
form ’lower:upper’ that will be

used for data connections. By default, any ←↩
free ports will be used.

Example: set to ’50000:50500’ to limit the ←↩
port range.

NOTE ports in this range *must not* be ←↩
used by other services!

DISABLE_IP_CHECK : (optional) in some situations, the client ←↩
IP can be different from

the one that was sent to the UFTPD server ←↩
. This will lead to rejected

transfers. Setting this variable to a non ←↩
-zero value will disable the

IP check. Only the one-time password will ←↩
be checked.

UNICORE UFTPD server 6

As usual if you set the SERVER_HOST to be "0.0.0.0", the server will bind to all the available
network interfaces.

If possible, use an "internal" interface for the Command socket. If that is not possible, make
sure the Command socket is protected by a firewall!

We STRONGLY recommend enabling SSL for the Command socket. Please refer to the next
section.

2.5 Protecting the Command socket

Using SSL for the Command port ensures that only trusted parties (i.e. trusted UNICORE
servers) can issue commands to the UFTPD server. To further limit the set of trusted users, an
access control list (ACL) file is used.

In production settings where users can log in to the UFTPD server machine, SSL MUST be
enabled to prevent unauthorized data access!

[NOTE] .IMPORTANT SECURITY NOTE

Without SSL enabled, users logged in to the UFTPD server can easily create exploits to read or
write files with arbitrary user privileges (except root).

2.5.1 SSL setup

To setup SSL, you need a keystore containing the UFTPD server’s credential, and a truststore
containing certificate authorities that should be trusted. Keystore and truststore can be the same
file.

The following properties can be set in the CONF/uftpd-ssl.conf file.

Table 1: Credential properties

Property name Type Default
value /
mandatory

Description

credential.path filesystem path mandatory
to be set

Credential location. In case
of jks, pkcs12 and pem store
it is the only location
required. In case when
credential is provided in
two files, it is the certificate
file path.

UNICORE UFTPD server 7

Table 1: (continued)

Property name Type Default
value /
mandatory

Description

credential.format [jks, pkcs12,
der, pem]

- Format of the credential. It
is guessed when not given.
Note that pem might be
either a PEM keystore with
certificates and keys (in
PEM format) or a pair of
PEM files (one with
certificate and second with
private key).

credential.passwordstring - Password required to load
the credential.

credential.keyPathstring - Location of the private key
if stored separately from
the main credential
(applicable for pem and der
types only),

credential.keyPasswordstring - Private key password,
which might be needed
only for jks or pkcs12, if
key is encrypted with
different password then the
main credential password.

credential.keyAliasstring - Keystore alias of the key
entry to be used. Can be
ignored if the keystore
contains only one key entry.
Only applicable for jks and
pkcs12.

Table 2: Truststore properties

Property name Type Default
value /
mandatory

Description

truststore.allowProxy[ALLOW,
DENY]

ALLOW Controls whether proxy
certificates are supported.

truststore.type [keystore,
openssl,
directory]

mandatory
to be set

The truststore type.

UNICORE UFTPD server 8

Table 2: (continued)

Property name Type Default
value /
mandatory

Description

truststore.updateIntervalinteger number 600 How often the truststore
should be reloaded, in
seconds. Set to negative
value to disable refreshing
at runtime. (runtime
updateable)

--- Directory type settings ---
truststore.directoryConnectionTimeoutinteger number 15 Connection timeout for

fetching the remote CA
certificates in seconds.

truststore.directoryDiskCachePathfilesystem path - Directory where CA
certificates should be
cached, after downloading
them from a remote source.
Can be left undefined if no
disk cache should be used.
Note that directory should
be secured, i.e. normal
users should not be allowed
to write to it.

truststore.directoryEncoding[PEM, DER] PEM For directory truststore
controls whether
certificates are encoded in
PEM or DER. Note that the
PEM file can contain
arbitrary number of
concatenated,
PEM-encoded certificates.

truststore.directoryLocations.*list of
properties with
a common
prefix

- List of CA certificates
locations. Can contain
URLs, local files and
wildcard expressions.
(runtime updateable)

--- Keystore type settings ---
truststore.keystoreFormatstring - The keystore type (jks,

pkcs12) in case of truststore
of keystore type.

truststore.keystorePasswordstring - The password of the
keystore type truststore.

truststore.keystorePathstring - The keystore path in case of
truststore of keystore type.

UNICORE UFTPD server 9

Table 2: (continued)

Property name Type Default
value /
mandatory

Description

--- Openssl type settings ---
truststore.opensslNewStoreFormat[true, false] false In case of openssl

truststore, specifies whether
the trust store is in openssl
1.0.0+ format (true) or
older openssl 0.x format
(false)

truststore.opensslNsMode[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EUGRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EUGRIDPMA_GLOBUSIn case of openssl
truststore, controls which
(and in which order)
namespace checking rules
should be applied. The
REQUIRE settings will
cause that all configured
namespace definitions files
must be present for each
trusted CA certificate
(otherwise checking will
fail). The AND settings will
cause to check both existing
namespace files. Otherwise
the first found is checked
(in the order defined by the
property).

truststore.opensslPathfilesystem path /etc/grid-security/certificatesDirectory to be used for
opeenssl truststore.

--- Revocation settings ---
truststore.crlConnectionTimeoutinteger number 15 Connection timeout for

fetching the remote CRLs
in seconds (not used for
Openssl truststores).

UNICORE UFTPD server 10

Table 2: (continued)

Property name Type Default
value /
mandatory

Description

truststore.crlDiskCachePathfilesystem path - Directory where CRLs
should be cached, after
downloading them from
remote source. Can be left
undefined if no disk cache
should be used. Note that
directory should be
secured, i.e. normal users
should not be allowed to
write to it. Not used for
Openssl truststores.

truststore.crlLocations.*list of
properties with
a common
prefix

- List of CRLs locations. Can
contain URLs, local files
and wildcard expressions.
Not used for Openssl
truststores. (runtime
updateable)

truststore.crlMode[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling
mode. The IF_VALID
setting turns on CRL
checking only in case the
CRL is present.

truststore.crlUpdateIntervalinteger number 600 How often CRLs should be
updated, in seconds. Set to
negative value to disable
refreshing at runtime.
(runtime updateable)

truststore.ocspCacheTtlinteger number 3600 For how long the OCSP
responses should be locally
cached in seconds (this is a
maximum value, responses
won’t be cached after
expiration)

truststore.ocspDiskCachefilesystem path - If this property is defined
then OCSP responses will
be cached on disk in the
defined folder.

truststore.ocspLocalResponders.<NUMBER>list of
properties with
a common
prefix

- Optional list of local OCSP
responders

UNICORE UFTPD server 11

Table 2: (continued)

Property name Type Default
value /
mandatory

Description

truststore.ocspMode[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAILABLEGeneral OCSP ckecking
mode. REQUIRE should
not be used unless it is
guaranteed that for all
certificates an OCSP
responder is defined.

truststore.ocspTimeoutinteger number 10000 Timeout for OCSP
connections in miliseconds.

truststore.revocationOrder[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation
sources order

truststore.revocationUseAll[true, false] false Controls whether all
defined revocation sources
should be always checked,
even if the first one already
confirmed that a checked
certificate is not revoked.

If the credential.path property is NOT set, SSL will be disabled.

[NOTE] .Backwards compatibility to previous versions

Existing configuration files with the javax.net.ssl.* properties used in UFTPD < 2.6 are
still supported

2.5.2 ACL setup

The access control list contains the distinguished names of those certificates that should be
allowed access.

The "ACL" setting in CONF/uftpd.conf is used to specify the location of the ACL file

export ACL=conf/uftpd.acl

The default ACL contains the certificate DN of the UNICORE/X server from the UNICORE
core server bundle. In production, you need to replace this by the actual DNs of your UNI-
CORE/X server(s) and UFTP Authentication server(s).

The ACL entries are expected in RFC2253 format. To get the name from a certificate in the
correct format using openssl, you can use the following OpenSSL command:

UNICORE UFTPD server 12

$> openssl x509 -in your_server.pem -noout -subject -nameopt ←↩
RFC2253

The ACL file can be updated at runtime.

2.6 Firewall configuration

Note
Please consult the firewall documentation on how to enable an "FTP" service on your firewall
(or operating system).

With Linux iptables, you may use rules similar to the following:

iptables -A INPUT -p tcp -m tcp --dport $SERVER_PORT -j ACCEPT
iptables -A INPUT -p tcp -m helper --helper ftp-$SERVER_PORT -j ←↩

ACCEPT

where $SERVER_PORT is the SERVER_PORT defined in uftpd.conf. The first rule allows any-
one to access port $SERVER_PORT. The second rule activates the iptables connection tracking
FTP module on port $SERVER_PORT.

On some operating systems it may be required to load additional kernel modules to enable
connection tracking, for example on CentOS:

modprobe nf_conntrack_ipv4
modprobe nf_conntrack_ftp ports=$SERVER_PORT

2.7 Logging

UFTPD uses log4j, the same logging system as other UNICORE components. Logging is
configured in the CONF/logging.properties file.

Note
You can change the logging configuration at runtime by editing the logging.properties file. The
new configuration will take effect a few seconds after the file has been modified.

By default, log files are written to the the LOG directory.

For more info on controlling the logging we refer to the log4j documentation:

• PatternLayout

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

UNICORE UFTPD server 13

• RollingFileAppender

• DailyRollingFileAppender

Log4j supports a very wide range of logging options, such as date based or size based file
rollover, logging different things to different files and much more. For full information on
Log4j we refer to the publicly available documentation, for example the Log4j manual.

2.7.1 Logger categories, names and levels

Logger names are hierarchical. Prefixes are used (e.g. "uftp.server") to which the Java class
name is appended.

The logging output produced can be controlled in a fine-grained manner. Log levels in Log4j
are (in increasing level of severity) TRACE, DEBUG, INFO, WARN, ERROR, amd FATAL.

For example, to track the UFTPD server’s communication with clients in detail, you can set

log4j.logger.uftp.server=DEBUG

Here is a table of logger categories

Log category Description
uftp All UFTP logging
uftp.security Security
uftp.server Server code
uftp.client Client code

Note
Please take care to not set the global level to TRACE or DEBUG for long times, as this may
produce a lot of output.

2.7.2 Usage logging

Often it is desirable to keep track of the usage of your UFTPD server. The server has a special
logger category which logs information about finished jobs at INFO level. If you wish to enable
this, set the level to INFO or higher:

log4j.logger.uftp.server.USAGE=INFO

3 UNICORE Integration

In UNICORE, UFTP can be used for uploading/downloading data from a server, as well as
server-to-server transfers, where one UNICORE/X instance acts as UFTP client.

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/manual.html

UNICORE UFTPD server 14

To enable a UNICORE/X server for the UFTP filetransfer the following settings have to be
made.

3.1 Configuring the UFTP service

The UNICORE/X server needs to know the UFTPD server settings (i.e. host and port of both
the command and the main listener socket). If the coreServices.uftp.server.host
property is set, UFTP will be enabled and advertised to clients.

In the uas.config file, the following properties are mandatory for UFTP:

#
REQUIRED parameters
#

Listener (pseudo-FTP) socket
coreServices.uftp.server.host=...
coreServices.uftp.server.port=...

Command socket
coreServices.uftp.command.host=...
coreServices.uftp.command.port=...

#
Full path to the ’uftp.sh’ client executable
on the TSI login node
#
coreServices.uftp.client.executable=...

There are further configuration options to tune how UFTP behaves

#
Optional parameters
#

How many parallel streams to use per file transfer
coreServices.uftp.streams=1

Limit the maximum number of streams per file transfer
coreServices.uftp.streamsLimit=4

3.2 UFTPD servers with multiple interfaces

If your UFTPD server is on a machine with multiple network interfaces, you can give a comma-
separated list of host names, like so:

coreServices.uftp.server.host=net1.domain.org,net2.domain.org

UNICORE UFTPD server 15

The UFTP client in this case will try to connect to the hosts in the specified order, and will use
the first "working" one.

3.3 Enabling data encryption

If you wish to encrypt the data sent/received by UFTPD (in data staging or server-to-server
transfers), the following property can be used:

enable data encryption
coreServices.uftp.encryption=true

This will by default encrypt data with a symmetric key using the Blowfish algorithm. This costs
some performance due to the additional CPU load. Encryption only works in single-stream
mode. Users can override this setting.

3.4 Limiting bandwidth per transfer

It is possible to limit the bandwidth that is consumed by a single UFTP transfer. It is given in
bytes per second.

limit transfer rate (bytes/second)
coreServices.uftp.rateLimit=10000000000

3.5 Disabling SSL on the command port

While not recommended, it may be sometimes useful to disable SSL for communicating with
the UFTPD, e.g. while setting up and testing. To do this add a property in uas.config (no
UNICORE/X restart is required)

coreServices.uftp.command.sslDisable=true

3.6 Enabling "local" UFTP mode on the UNICORE/X server

In case the UNICORE/X server has direct access to the target file system, and you’re not using
the UNICORE TSI, it can be an interesting option to run the UFTP filetransfer client code
directly in the UNICORE/X server instead of passing it to the TSI. This means more load in the
UNICORE/X process. It is also a way to use UFTP to/from a UNICORE/X server running on
Windows. To enable local mode, edit uas.config and set

enable local client mode
coreServices.uftp.client.local=true

UNICORE UFTPD server 16

4 Testing the UFTPD server

Testing as described in this section works only if SSL is not enabled. Therefore, you should run
these tests as a non-root user. Enable SSL and restart the UFTPD server with root privileges
once you are finished with these tests.

The UFTPD distribution contains two scripts that allow you to test the UFP functionality with-
out using any external servers or clients. Making a data transfer involves two steps:

• invoke uftp-job.sh to "announce" an upcoming transfer to the UFTPD server

• invoke uftp.sh to initiate the actual transfer

Note, in case you installed from an RPM or DEB package, these files are located in /usr/bin.

The following shell commands "transfer" the file .bashrc to the /tmp directory.

Assuming you installed from RPM/DEB:

. /etc/unicore/uftpd/uftpd.conf
uftp-job.sh -c localhost -f ~/.bashrc -s true -x my_secret -n 2 -u ←↩

unicore -g unicore
uftp.sh -r -f /tmp/test -L $SERVER_PORT -l $SERVER_HOST -x ←↩

my_secret -n 2

This should create a file /tmp/test identical to ~/.bashrc. Check the console output and
the UFTPD log file LOG/uftpd.log in case of errors.

After the transfer finished, check that indeed

md5sum /tmp/test ~/.bashrc

gives the correct checksum for the newly created file.

It is also possible to enable encryption "manually", by appending "-E <key>" to the commands
above, where "key" is a sequence of 12 characters (really a base64-encoded 64 bit key).

5 Performance measurement hints

To run performance tests, it is possible to read and write from/to pseudo files in "/dev". Since
UFTP needs to know the number of bytes to transfer, this can be given using a "pseudo" file-
name. For example, you could read from "/dev/zero_<number_of_bytes>" and write to "/de-
v/null".

UFTP will treat any filename that starts with "/dev" and contains an underscore "_" character in
this manner.

For example, to transfer a gigabyte of zeros to /dev/null,

UNICORE UFTPD server 17

. /etc/unicore/uftpd/uftpd.conf
uftp-job.sh -c localhost -f /dev/zero_1000000000 -s true -x ←↩

my_secret -n 2 -u unicore -g unicore
uftp.sh -r -f /dev/null -L $SERVER_PORT -l $SERVER_HOST -x ←↩

my_secret -n 2

	UNICORE UFTP
	UFTP features
	How does UFTP work

	Installation and use
	Prerequisites
	C library for switching user ID
	Starting and stopping the UFTPD server
	Configuration parameters
	Protecting the Command socket
	Firewall configuration
	Logging

	UNICORE Integration
	Configuring the UFTP service
	UFTPD servers with multiple interfaces
	Enabling data encryption
	Limiting bandwidth per transfer
	Disabling SSL on the command port
	Enabling "local" UFTP mode on the UNICORE/X server

	Testing the UFTPD server
	Performance measurement hints

