
UNICORE UFTP server

UNICORE UFTP SERVER

UNICORE Team

Document Version: 1.2.1
Component Version: 1.2.1
Date: 19 04 2012

UNICORE UFTP server

Contents

1 UNICORE UFTP 1

2 Installation and use 2

2.1 Prerequisites . 2

2.2 C library for switching user ID . 3

2.3 Starting and stopping the UFTPD server . 3

2.4 Configuration parameters . 4

2.5 Protecting the Command socket . 5

2.6 Firewall configuration . 6

3 UNICORE Integration 6

3.1 Enabling the UFTP service . 6

3.2 Enabling the UFTP protocol . 7

3.3 Configuration options . 7

3.4 UFTP servers with multiple interfaces . 7

3.5 Enabling data encryption . 7

3.6 Disabling SSL on the command port . 8

3.7 Enabling "local" UFTP mode on the UNICORE/X server 8

4 Testing the UFTP server without UNICORE 8

5 Performance measurement hints 9

UNICORE UFTP server 1

This is the UFTP user manual providing information on running and using the UNICORE UFTP
server uftpd. Please note also the following places for getting more information:

UNICORE Website: http://www.unicore.eu

Support list: unicore-support@lists.sf.net

Developer’s list: unicore-devel@lists.sf.net

1 UNICORE UFTP

UFTP is a data streaming library and file transfer tool based with the following features:

• dynamic firewall port opening using a pseudo FTP connection, written by Tim Pohlmann
(Juelich Supercomputing Centre, 2010)

• parallel input/output streams based on code from the JPARSS library, Copyright (c) 2001
Southeastern Universities Research Association, Thomas Jefferson National Accelerator Fa-
cility

• optional encryption of the data streams using a symmetric key algorithm

It is integrated into UNICORE version 6.4.1 and later, and allows to transfer data from client
to server (and vice versa), as well as providing data staging between UFTP-enabled UNICORE
sites.

The server part, called uftpd, listens on two ports (which may be on two different network
interfaces):

• the command port receives control commands

• the listen port accepts data connections from clients.

The uftpd server is "controlled" by UNICORE/X via the command port, and receives/sends
data directly from/to a user’s client machine or another UFTP enabled UNICORE server. Data
connnections are made to the "listen" port, which has to be accessible from external machines.
Firewalls have to treat the "listen" port as an FTP port.

A UFTP file transfer works as follows:

• the UNICORE/X server sends a request to the command port. This request notifies the
UFTPD server about the upcoming transfer and contains the following information

• the client’s IP address

• the source/target file name

• whether to send or receive data

http://www.unicore.eu
mailto:unicore-support@lists.sf.net
mailto:unicore-devel@lists.sf.net

UNICORE UFTP server 2

• a "secret", i.e. a string the client will send to authenticate itself

• how many data connections will be opened

• the user and group id for who to create the file (in case of send mode)

• an optional key to encrypt/decrypt the data

• the UFTPD server will now accept an incoming connection from the announced IP address,
provided the supplied "secret" matches the expectation.

• if everything is OK, the requested number of data connections from the client can be opened.
Firewall transversal will be negotiated using a pseudo FTP protocol.

• the file is sent/received using the requested number of data connections

• to access the requested file, uftpd attempts to switch its user id to the requested one prior to
reading/writing the file. This uses a C library which is accessed from Java via the Java native
interface (JNI). See also the installation section below.

IMPORTANT SECURITY NOTE
The UNICORE UFTPD server is running with root privileges. Make sure to read and under-
stand the section below on protecting the command socket. Otherwise, users logged on to
the UFTPD machine can possibly read and write other user’s files.

2 Installation and use

2.1 Prerequisites

• Java 1.6 (or later) runtime is required

• the server "listen" port needs to be accessible through your firewalls, declaring it an "FTP"
port

• the UFTPD server needs access to the target file systems

• a server certificate for the UFTPD server is strongly recommended for production use (see
the section on SSL below)

• UNICORE 6.4.2 or later

UNICORE UFTP server 3

NOTE ON PATHS
The UNICORE UFTP server is distributed either as a platform independent and portable tar.gz
or zip bundle, or as an installable, platform dependent package such as RPM.
Depending on the installation package, the paths to various files are different. If installing
using distribution-specific package the following paths are used:

CONF=/etc/unicore/uftpd
SBIN=/usr/sbin
BIN=/usr/bin
LOG=/var/log/unicore/uftpd
LIB=/usr/share/unicore/uftpd/lib

If installing using the portable bundle, all UFTP files are installed under a single directory.
Path prefixes are as follows, where INST is the directory where UFTP was installed:

CONF=INST/conf
SBIN=INST/bin
BIN=INST/bin
LOG=INST/log
LIB=INST/lib

These variables (CONF, SBIN, BIN and LOG) are used throughout the rest of this manual.

2.2 C library for switching user ID

It may be required to re-compile the libuftp-unix.so library on your system. This library uses
the Java Native Interface (JNI). The version supplied with the distribution has been compiled on
a 64bit Linux system. The folder LIB/native contains the required headers and C source files, as
well as an exemplary makefile. Please edit the makefile, the following information is required:

• the base directory of our Java installation (JAVA_HOME)

• the location of platform-specific include files

• the location of the uftp-<version>.jar file (LIB)

Then, run "make install" to build the library, which will compile the code and install the library
into the LIB folder. If any problems occur during this procedure, please consult UNICORE
support.

2.3 Starting and stopping the UFTPD server

In the SBIN directory, start/stop and status scripts are provided:

UNICORE UFTP server 4

• unicore-uftpd-start.sh starts the server

• unicore-uftpd-stop.sh stops the server

• unicore-uftpd-status.sh checks the server status

The parameters such as server host/port, control host/port, and others are configured in the
CONF/uftpd.conf file

In a production scenario with multiple users, the uftpd server needs to be started as root. This
is necessary to be able to set the correct file permissions.

2.4 Configuration parameters

The following variables can be defined in the configuration file (uftpd.conf):

SERVER_HOST : the interface where the server listens for client data
connections

SERVER_PORT : the port where the server listens for client data
connections

CMD_HOST : the interface where the server listens for control commands

CMD_PORT : the port where the server listens for control commands

UFTPD_MEM : the maximum memory allocated to the UFTPD server

MAX_CONNECTIONS : the maximum number of parallel TCP streams per client

BUFFER_SIZE : the size of the buffer (in kilobytes) for reading/writing local files

SSL_CONF : File containing SSL settings for the command port

ACL : File containing the list of server DNs that are allowed
access to the command port

As usual if you set the SERVER_HOST to be "0.0.0.0", the server will bind to all the available
network interfaces.

If possible, use an "internal" interface for the Command socket. If that is not possible, make
sure the Command socket is protected by a firewall!

We strongly recommend enabling SSL for the Command socket. Please refer to the next section.

UNICORE UFTP server 5

2.5 Protecting the Command socket

Using SSL for the Command port ensures that only trusted users (rather, trusted UNICORE
servers) can issue commands to the UFTPD server. To further limit the set of trusted users, an
access control list (ACL) file is used.

In production settings where users can log in to the UFTPD server, SSL should ALWAYS be
enabled.

2.5.1 SSL setup

IMPORTANT SECURITY NOTE
Without SSL enabled, users logged in to the UFTPD server can potentially read or write files
with root privileges.

As usual for SSL, you need a keystore containing the UFTPD server’s certificate, and a truststore
containing certificate authorities that should be trusted. Keystore and truststore can be the same
file.

The following properties can be set in the CONF/udtpd-ssl.conf file.

• javax.net.ssl.keyStore Keystore file containing the UFTPD key

• javax.net.ssl.keyStorePassword Keystore password

• javax.net.ssl.keyStoreType (optional) JKS or PKCS12, default is JKS

• javax.net.ssl.trustStore Truststore file containing the trusted CAs

• javax.net.ssl.trustStorePassword Truststore password

If the javax.net.ssl.keyStore property is NOT set, SSL will be disabled.

If the javax.net.ssl.keyStorePassword property is not set, the keystore password
will be queried from the command line. If you want to use this, you will need to adapt the start
script, avoiding the use of "nohup".

Please refer also to the UNICORE FAQ for keystore related questions.

2.5.2 ACL setup

The access control list contains the distinguished names of those certificates that should be
allowed access.

The "ACL" setting in CONF/uftpd.conf is used to specify the location of the ACL file

export ACL=conf/uftpd.acl

UNICORE UFTP server 6

The default ACL contains the certificate DN of the UNICORE/X server from the UNICORE
core server bundle. In production, you need to replace this by the actual DNs of your UNI-
CORE/X server(s).

The ACL entries are expected in RFC2253 format. To get the name from a certificate in the
correct format using openssl, you can use the following OpenSSL command:

$> openssl x509 -in your_server.pem -noout -subject -nameopt RFC2253

2.6 Firewall configuration

Note
Please consult the firewall documentation on how to enable an "FTP" service on your firewall
(or operating system).

With Linux iptables, you may use rules similar to the following:

iptables -A INPUT -p tcp -m tcp --dport $SERVER_PORT -j ACCEPT
iptables -A INPUT -p tcp -m helper --helper ftp-$SERVER_PORT -j ←↩

ACCEPT

where $SERVER_PORT is the SERVER_PORT defined in uftpd.conf. The first rule allows any-
one to access port $SERVER_PORT. The second rule activates the iptables connection tracking
FTP module on port $SERVER_PORT.

On some operating systems it may be required to load additional kernel modules to enable
connection tracking, for example on CentOS:

modprobe nf_conntrack_ipv4
modprobe nf_conntrack_ftp ports=$SERVER_PORT

3 UNICORE Integration

To enable a UNICORE/X server for the UFTP filetransfer the following settings have to be
made.

3.1 Enabling the UFTP service

In the wsrflite.xml file, add a service definition for the UFTP filetransfer service:

<service name="FileTransferUFTP" wsrf="true" persistent="true">
<interface class="de.fzj.unicore.uas.fts.FileTransfer" />
<implementation class="de.fzj.unicore.uas.fts. ←↩

FileTransferHomeImpl"/>
</service>

UNICORE UFTP server 7

3.2 Enabling the UFTP protocol

For those storages where you want UFTP enabled, you need to add it to the list of supported
protocols. This is done in the UNICORE/X main config file uas.config.

supported protocols
uas.sms.protocols=BFT UFTP RBYTEIO SBYTEIO

Please check the UNICORE/X manual for further details.

3.3 Configuration options

The UNICORE/X server needs to know the UFTPD server settings (i.e. host and port of both the
command and the main listener socket). In the uas.config file, set the following properties:

Listener (pseudo-FTP) socket
uftp.server.host=...
uftp.server.port=...

Command socket
uftp.command.host=...
uftp.command.port=...

Full path to the ’uftp.sh’ client executable
uftp.client.executable=...

How many parallel streams to use per file transfer
uftp.streams=2

(optional) file read/write buffer in kbytes
uftp.buffersize=128

3.4 UFTP servers with multiple interfaces

If your UFTP server is on a machine with multiple network interfaces, you can give a comma-
separated list of host names, like so:

uftp.server.host=net1.domain.org,net2.domain.org

The UFTP client in this case will try to connect to the hosts in the specified order, and will use
the first "working" one.

3.5 Enabling data encryption

If you wish to encrypt the data sent/received by UFTPD (for example in data staging), the
following property can be used:

UNICORE UFTP server 8

enable data encryption
uftp.encryption=true

This will encrypt data with a symmetric key using the Blowfish algorithm. This costs some
performance due to the additional CPU load. Encryption only works in single-stream mode.

3.6 Disabling SSL on the command port

While not recommended, it may be sometimes useful to disable SSL for communicating with
the UFTPD, e.g. while setting up and testing. To do this add a property in uas.config (no
UNICORE/X restart is required)

uftp.command.ssl.disable=true

3.7 Enabling "local" UFTP mode on the UNICORE/X server

In case the UNICORE/X server has direct access to the target file system, and you’re not using
the Perl TSI, it can be an interesting option to run the UFTP filetransfer client code directly in the
UNICORE/X server instead of passing it to the TSI. This means more load in the UNICORE/X
process. To enable local mode, edit uas.config and set

enable local client mode
uftp.client.local=true

4 Testing the UFTP server without UNICORE

Testing as described in this section works only if SSL is not enabled. Therefore, you should run
these tests as a non-root user. Enable SSL and restart the UFTPD server with root privileges
once you are finished with these tests.

The UFTP distribution contains two scripts that allow you to test the UFP functionality without
using UNICORE. Making a data transfer involves two steps:

• invoke uftp-job.sh to "announce" an upcoming transfer to the UFTPD server

• invoke uftp.sh to initiate the actual transfer

Note, in case you installed from an RPM or DEB package, these files are located in /usr/bin.

The following shell commands "transfer" the file .bashrc to the /tmp directory.

Assuming you installed from RPM/DEB:

UNICORE UFTP server 9

. /etc/unicore/uftpd/uftpd.conf
unicore-uftpd-job.sh -c localhost -f ~/.bashrc -s true -x my_secret ←↩

-n 2 -u unicore -g unicore
uftp.sh -r -f /tmp/test -L $SERVER_PORT -l $SERVER_HOST -x ←↩

my_secret -n 2

This should create a file /tmp/test identical to ~/.bashrc. Check the console output and
the UFTPD log file LOG/uftpd.log in case of errors.

After the transfer finished, check that indeed

md5sum /tmp/test ~/.bashrc

gives the correct checksum for the newly created file.

It is also possible to enable encryption "manually", by appending "-E <key>" to the commands
above, where "key" is a sequence of 12 characters (really a base64-encoded 64 bit key).

5 Performance measurement hints

To run performance tests, it is possible to read and write from/to pseudo files in "/dev". Since
UFTP needs to know the number of bytes to transfer, this can be given using a "pseudo" file-
name. For example, you could read from "/dev/zero_<number_of_bytes>" and write to "/de-
v/null".

UFTP will treat any filename that starts with "/dev" and contains an underscore "_" character in
this manner.

For example, to transfer a gigabyte of zeros to /dev/null,

. /etc/unicore/uftpd/uftpd.conf
unicore-uftpd-job.sh -c localhost -f /dev/zero_1000000000 -s true - ←↩

x my_secret -n 2 -u unicore -g unicore
uftp.sh -r -f /dev/null -L $SERVER_PORT -l $SERVER_HOST -x ←↩

my_secret -n 2

	UNICORE UFTP
	Installation and use
	Prerequisites
	C library for switching user ID
	Starting and stopping the UFTPD server
	Configuration parameters
	Protecting the Command socket
	Firewall configuration

	UNICORE Integration
	Enabling the UFTP service
	Enabling the UFTP protocol
	Configuration options
	UFTP servers with multiple interfaces
	Enabling data encryption
	Disabling SSL on the command port
	Enabling "local" UFTP mode on the UNICORE/X server

	Testing the UFTP server without UNICORE
	Performance measurement hints

