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1 Overview

The UNICORE TSI is a daemon running on the frontend of the target resource (e.g. a cluster
login node). It provides a remote interface to the operating system, the batch system and the
file system of the target resource. It is used by the UNICORE/X server to perform tasks on the
target resource, such as submitting and monitoring jobs, handling data, managing directories
etc.

The TSI performs the work on behalf of UNICORE users and so must be able to execute pro-
cesses under different uids and gids. Therefore, in production it must be run with sufficient
privileges to allow this (during development and testing it can be run as a normal user).

You can configure the TSI and UNICORE/X to communicate via SSL. In this case, you need a
server certificate for the TSI. For details, see Section Section 5.4

The TSI is one point where UNICORE’s seamless model meets local variations and so will
usually need to be adapted to the target system. This is described in Section Section 6

Note
In production environments, the TSI will run with root privileges. Make sure to read and
understand section Section 11 on security and hardening the system.

2 Prerequisites

The TSI requires Python Version 3.4 or later. It works only on Unix-style operating systems
(e.g. Linux or Mac OS/X), Windows is not directly supported.

Batch system status checks (e.g. via squeue for Slurm) will be executed under a system account
(usually unicore) which is configured in the UNICORE/X server configuration. Note that this
system account cannot be root, as the TSI will never execute anything as root.

The system account MUST be able to list batch job status from all users! If necessary, configure
your batch system accordingly. For details on this procedure we refer to the documentation of
your batch system.

3 Installation

The TSI is available either as a generic distribution (part of the UNICORE core server bundle,
or as a separate tgz archive) or as a batch system specific package (such as an RPM, deb or tgz
for Torque or Slurm).
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3.1 Batch system specific distribution

Use the installation tools of your operating system to install the package. The following table
shows the location of the TSI files.

Table 1: TSI Directory Layout for the OS-specific distribution

Name in this manual Location Description
CONF /etc/unicore/tsi Configuration files
BIN /usr/share/unicore/tsi/bin Start/stop scripts
LIB /usr/share/unicore/tsi/lib Python files
LOGS /var/run/unicore/tsi/logs Log files

3.2 Generic distribution

The generic TSI distribution contains several TSI variations for many popular batch systems.

Before being able to use the TSI, you must install one of the TSI variants and configure it for
your local environment.

• Execute the installation script Install.sh and follow the instructions to copy all required
files into a new TSI installation directory.

• Adapt the configuration as described below

In the following, TSI_INSTALL refers to the directory where you installed the TSI. This has
the following sub-directories

Table 2: TSI Directory Layout for the generic distribution

Name in this manual Location Description
TSI_INSTALL Base directory chosen

during execution of
Install.sh

CONF TSI_INSTALL/conf Configuration files
BIN TSI_INSTALL/bin Start/stop scripts
LIB TSI_INSTALL/lib Python files
LOGS TSI_INSTALL/logs Log files
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4 File permissions

The permissions on the TSI files should be set to read only for the owner. The default installation
procedure will initially take care of this. As the TSI is executed as root you should never leave
any TSI files (or directories) writable after any update.

5 Configuring the TSI

The TSI is configured by editing the CONF/tsi.properties and CONF/startup.properties
files. Please review these two files carefully.

Changes outside the config files should not be necessary, except for new portings and any local
adaptations, as detailed in the next section. If changes are made, they should be passed on to the
UNICORE developers, so that they can be incorporated into future releases of the scripts. To do
that, send mail to unicore-support@lists.sf.net or use the issue tracker at https://sourceforge.net/-
p/unicore/issues

5.1 Verifying

Before starting the TSI, you should make sure that the batch system integration is working
correctly. See the section on "Adapting the TSI to your system" below!

5.2 UNICORE/X configuration

UNICORE/X configuration is described fully in the relevant UNICORE/X manual. Here we
just give the most important steps to get the TSI up and running.

The relevant UNICORE/X config file is the XNJS config file (usually it is called xnjs_legacy.xml)

5.2.1 Hostnames and ports

UNICORE/X needs to know the TSI hostname and port:

CLASSICTSI.machine=frontend.mycluster.org
CLASSICTSI.port=4433

5.2.2 SSL support

If you wish to setup SSL for the UNICORE/X-to-TSI communication, please refer to section
Section 5.4.

mailto:unicore-support@lists.sf.net
https://sourceforge.net/p/unicore/issues
https://sourceforge.net/p/unicore/issues
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5.3 ACL support

The TSI (together with UNICORE/X) provides a possibility to manipulate file Access Control
Lists (ACLs). To use ACLs, the appropriate support must be available from the underlying
file system. Currently only the so called POSIX ACLs are supported (so called as in fact the
relevant documents POSIX 1003.1e/1003.2c were never finalized), using the popular setfacl
and getfacl commands. Most current file systems provide support for the POSIX ACLs.

Note
that the current version is relying on extensions of the ACL commands which are present in
the Linux implementation. In case of other implementation (e.g. BSD) the ACL module should
be extended, otherwise the default ACLs (which are used for directories) support will not work.

To enable POSIX ACL support you typically must ensure that:

• the required file systems are mounted with ACL support turned on,

• the getfacl and setfacl commands are available on your machine.

Configuration of ACLs is performed in the tsi.properties file. First of all you can define
a location of setfacl and getfacl programs with tsi.setfacl and tsi.getfacl
properties. By providing absolute paths you can use non-standard locations, typically it is
enough to leave the default, non-absolute values which will use programs as available under the
standard shell search path. Note that if you will comment any of those properties, the POSIX
ACL subsystem will be turned off.

Configuration of ACL support is per directory, using properties of the format: tsi.acl.PATH,
where PATH is an absolute directory path for which the setting is being made. You can provide
as many settings as required, the most specific one will be used. The valid values are POSIX
and NONE respectively for POSIX ACLs and for turning off the ACL support.

Consider an example:

tsi.acl./=NONE
tsi.acl./home=POSIX
tsi.acl./mnt/apps=POSIX
tsi.acl./mnt/apps/external=NONE

The above configuration turns off ACL for all directories, except for everything under /home
and everything under /mnt/apps with the exception of /mnt/apps/external.

Warning
Do not use symbolic links or .. or . in properties configuring directories - use only
absolute, normalized paths. Currently spaces in paths are also unsupported.
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Note
The ACL support settings are typically cached on the UNICORE/X side (for a few minutes).
Therefore, after changing the TSI configuration (and after resetting the TSI) you have to wait
a bit until the new configuration is applied also in UNICORE/X.

5.3.1 ACL limitations

There is no ubiquitous standard for file ACLs. "POSIX draft" ACLs are by far the most popular
however there are several other implementations. Here is a short list that should help to figure
out the situation:

• POSIX ACLs are supported on Linux and BSD systems.

• The following file systems support POSIX ACLs: Lustre, ext{2,3,4}, JFS, ReiserFS and XFS.

• Solaris ACLs are very similar to POSIX ACLs and it should be possible to use TSI to ma-
nipulate them at least partially (remove all ACL operation won’t work for sure and note that
usage of Solaris ACLs was never tested). Full support may be provided on request.

• NFS version 4 provides a completely different, and currently unsupported implementation of
ACLs.

• NFS version 3 uses ACLs with the same syntax as Solaris OS.

• There are also other implementations, present on AIX or Mac OS systems or in AFS FS.

Note that in future more ACL types may be supported and will be configured in the same
manner, just using a different property value.

5.4 Enabling SSL for the UNICORE/X - TSI communication

SSL support should be enabled for the UNICORE/X - TSI communication to increase security.
This is a MUST when UNICORE/X and TSI run on the same host, and/or user login is possible
on the UNICORE/X host, to prevent attackers gaining control over the TSI.

You need

• a private key and certificate for the TSI,

• the CA certificate of the TSI certificate

• the DN (subject distinguished name) of the UNICORE/X servers that shall be allowed to
connect to the TSI,

• the CA certificate of the UNICORE/X certificate.
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The certificate of the TSI signer CA must be added to the UNICORE/X truststore.

The following configuration options must be set in tsi.properties :

• tsi.keystore : file containing the private TSI key in PEM format

• tsi.keypass : password for decrypting the key

• tsi.certificate : file containing the TSI certificate in PEM format

• tsi.truststore : file containing the certificate of the accepted CA(s) in PEM format

• tsi.allowed_dn.NNN : allowed DNs of UNICORE/X servers in RFC or OpenSSL for-
mat

SSL is activated if the keystore file is specified in tsi.properties.

The truststore file contains the CA cert(s):

-----BEGIN CERTIFICATE-----

... PEM data omitted ...

-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----

... PEM data omitted ...

-----END CERTIFICATE-----

The tsi.allowed_dn.NNN properties are used to specify which certificates are allowed, for
example:

tsi.allowed_dn.1=CN=UNICORE/X 1, O=UNICORE, C=EU
tsi.allowed_dn.2=CN=UNICORE/X 2, O=UNICORE, C=EU

Note
If you do not specify any access control entries, all certificates issued by trusted CAs are
allowed to connect to the TSI. Be very careful to prevent illicit access to the TSI!

When UNICORE/X connects, its certificate is checked:

• the UNICORE/X cert has to be valid (i.e. issued by a trusted CA and not expired)

• the subject of the UNICORE/X cert is checked against the configured ACL (list of allowed
DNs).

On the UNICORE/X side, set the following property (usually in the xnjs.properties file)

# enable SSL using the UNICORE/X key and trusted certificates
CLASSICTSI.ssl.disable=false
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6 Adapting the TSI to your system

6.1 Environment and paths

The environment and path settings for the main TSI process and all its child processes (TSI
workers) are controlled in the startup.properties file.

Important
Please revise the path and environment settings in the main "startup.properties" con-
fig file.

These should include the path to all executables required by the TSI, notably the batch system
commands, and if applicable, the ACL commands.

As the TSI process runs as root, and switches to the required user/group IDs before each request,
setting up the required environment per user has to be done carefully. Per-user settings are
usually done on the UNICORE/X level using "IDB templates", please consult the UNICORE/X
documentation.

6.2 Assigning groups to the current user

The current user will all her groups assigned. On some systems the default Python function used
for resolving a user’s groups does not see all the groups. If this is the case, set in tsi.properties

tsi.use_id_to_resolve_gids=true

This will use a different implementation via the system command id -G <username>.

6.3 Batch system integration: BSS.py

This file contains the functions specific to the used batch system, specifically it prepares the job
script, deals with job status reporting and job control.

Even if you run a well-supported batch system such as Torque or Slurm, you should make sure
that the job status reporting works properly.

Also, any site-specific resource settings (e.g. settings related to GPUs, network topology etc)
are dealt with in this file.

6.4 Reporting free disk space

UNICORE will often invoke the "df" command which is implemented in the IO.py file in order
to get information about free disk space. On some distributed file systems, executing this com-
mand can take quite some time, and it may be advisable to modify the "df" function to optimize
this behaviour.



UNICORE TSI Manual 8

6.5 Reporting computing time budget

If supported by your site installation, users might have a computing time budget allocated to
them. The BSS.py module contains a function get_budget that is used to retrieve this budget
as a number e.g. representing core-hours. By default, this function returns "-1" to indicate that
computing time is not budgeted.

6.6 Filtering cluster working nodes

Starting from version 6.5.1 the TSI can filter nodes based on the properties defined for nodes in
BSS configuration. It can limit working nodes only to those having shared file system. It can
be defined in the tsi.properties file by setting the property tsi.nodes_filter.

Note that this feature is not working for all batch systems. Currently it is supported in: Torque
and SLURM.

6.7 Resource reservation

The reservation module Reservation.py is responsible for interacting with the reservation system
of your batch system.

Note that this feature is not available for all batch systems. Currently it is included in: Torque
and SLURM.

7 Execution model

The initial TSI process to be started is called the TSI shepherd which will respond to UNI-
CORE/X requests and start up TSI workers to do the work for the UNICORE/X server. The
TSI workers connect back to the UNICORE/X server.

It is possible to use the same TSI from multiple UNICORE/X servers.

Since the TSI runs with root privileges, it must authenticate the source of commands as legit-
imate. To do this, the TSI is initialised with the address(es) of the machine(s) that runs the
UNICORE/X. The TSI shepherd will only accept requests from the defined UNICORE/X ma-
chine(s). The callback port can be pre-defined in tsi.properties as well. If it is undefined,
the TSI will attempt to read it from the UNICORE/X connect message.

Note that it is possible to enable SSL on the TSI shepherd port, see below. In SSL mode, there
is no check of the UNICORE/X address.

If the UNICORE/X process dies any TSI workers that are connected to UNICORE/X will also
die. However, the TSI shepherd will continue executing and will supply new TSI processes
when the UNICORE/X server is restarted. Therefore, it is not necessary to restart the TSI
daemon when restarting UNICORE/X.
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If a TSI worker stops execution, UNICORE/X will request a new one to replace it.

If the TSI shepherd stops execution, then all TSI processes will also be killed. The TSI shepherd
must then be restarted, this does not happen automatically.

8 Directories used by the TSI

The TSI must have access to the "filespace" directory specified in the UNICORE/X configu-
ration (usually the property XNJS.filespace in xnjs_legacy.xml) to hold job directories. These
directories are written with the TSI’s uid set to the xlogin for which the work is being performed
and so must be world writable. The Unix access mode is 1777.

9 Running the TSI

9.1 Starting

If installed from an Linux package, the TSI can be started using the init script

/etc/init.d/unicore-tsi start

The TSI can also be started using the script "BIN/start.sh".

Depending on the shell used to start the TSI it may be necessary to execute these commands
through nohup if you want to log out afterwards.

9.2 Stopping the TSI

If installed from an Linux package, the TSI can be stopped using the init script

/etc/init.d/unicore-tsi stop

The main TSI process (shepherd) can be killed (preferably using SIGTERM). Since this results
in the killing of all TSI processes this should only be done when the NJS has been stopped.
However, under Linux it was found that killing the TSI shepherd will not kill the TSI workers.

The TSI can also be killed using the script "BIN/stop.sh" (cf. section Scripts). This will kill the
TSI shepherd and the tree of all spawned processes including the TSI workers.

TSI worker processes (but not the shepherd) will stop executing when the UNICORE/X server
it connects to stops executing.

It is possible to kill a TSI worker process but this could result in the failure of a job (but the
UNICORE/X server will recover and create new TSI processes).
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9.3 TSI logging

TBD

10 Porting the TSI to other batch systems

Most variations are found in the batch subsystem commands, porting to a new BSS usually
requires changes to the following files:

• BSS.py

• Reservation.py (reservation functions if applicable)

It is recommended to start from a up-to-date and well-documented TSI, e.g. the Torque or Slurm
variation. If you have further questions regarding porting to a new batch system, please use the
unicore-support@lists.sf.net or unicore-devel@lists.sf.net mailing lists.

11 Securing and hardening the system

In a normal multi-user production setting, the TSI runs with root privileges, and thus it is critical
to prevent illicit access to the TSI, which would allow accessing or destroying arbitrary user
data, as well as impersonating users and generally wreaking havoc.

Once the connection to the UNICORE/X is established, the TSI is controlled via a simple text-
based API. An attacker allowed to connect to the TSI can very easily execute commands as any
valid (non-root) user.

In non-SSL mode, the TSI checks the IP address of the connecting process, and compare it with
the expected one which is configured in the tsi.properties file.

In SSL mode, the TSI checks the certificate of the connecting process, by validating it against
its truststore which is configured in the tsi.properties file.

We recommed the following measures to make operating the TSI secure.

• Prevent all access to the TSI’s config and executable files. This is usually done by setting
appropriate file permissions, and usually already taken care of during installation. See section
Section 4.

• Make sure only UNICORE/X can connect to the TSI. This is most reliably done by configur-
ing SSL for the UNICORE/X to TSI communication. See section Section 5.4.

• If SSL cannot be used, the UNICORE/X should run on a separate machine.

• On the UNICORE/X machine, user login should be impossible. This will prevent bypass-
ing the IP check (in non-SSL mode) and/or accessing the UNICORE/X private key (in SSL
mode).

mailto:unicore-support@lists.sf.net
mailto:unicore-devel@lists.sf.net
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• If you for some reason HAVE to run UNICORE/X and TSI on the same machine, and user
login or execution of user commands is possible on that machine, you MUST use SSL, and
take special care to protect the UNICORE/X config files and keystore using appropriate file
permissions. Not using SSL in this situation is a serious risk! An attacker connecting to the
TSI can impersonate any user and access any user’s data (except for the root user).

• An additional safeguard is to establish monitoring for UNICORE/X, and kill the TSI in case
the UNICORE/X process terminates.

Summarizing, it is critical to protect config files and executable files. We strongly recommend
to configure SSL. Using SSL is a MUST when users can login to the UNICORE/X machine.

12 The TSI API

This document describes the API to the TSI as used by UNICORE/X (more concretely, the
XNJS subsystem of UNICORE/X). The parts of the TSI that interact with the target system
have been isolated and are documented here with their function calls.

The functions are implemented in the TSI as calls to Python methods. Input data from the UNI-
CORE/X server is passed as arguments to the method. Output is returned to the UNICORE/X
server by calling some global methods documented below or by directly accessing the TSI’s
command and data channels. TSIs are shipped with default implementations of all the func-
tions and can be tailored by changing the supplied code or by implementing new versions of the
functions that need to change for the system.

Note that this document is not a complete definition of the API, it is a general overview. The full
API specification can be derived by reading the TSI code supplied with a UNICORE release.

12.1 Initialisation

For connecting to the UNICORE/X server, a callback mechanism is used. First, the UNI-
CORE/X server will contact the main TSI process to request the creation of a new TSI worker
process. The main TSI will call back the UNICORE/X server and create the necessary commu-
nications. It will receive any initialisation information send by the UNICORE/X server. After
successful creation of the TSI worker process, the UNICORE/X server can communicate with
the worker and ask it to execute commands. The UNICORE/X-to-TSI connection uses two
sockets, a data and a command socket.

After initialisation is complete, the process() function (in the TSI.py module) is entered,
which reads messages from the UNICORE/X server and dispatches processing to the various
TSI functions.
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12.2 Messages to the UNICORE/X server

The TSI provides methods to pass messages to the UNICORE/X server. In particular the UNI-
CORE/X server expects every method to call either ok() or failed() at the end of its execution.
The messaging methods are implemented in Connector.py:

• ok(string) Sends a message to the UNICORE/X server to say that execution of the com-
mand was successful.

• failed(string) Sends a message to the UNICORE/X server to say that execution of the
command failed. The string is sent to the UNICORE/X server as part of the failure message.

Messages have to end with a special tag "ENDOFMESSAGE", since the command sockets are
left open for receiving the next command.

12.3 User identity and environment setting

In production mode the TSI will be started as a privileged user capable of changing the TSI
worker process’ uid and gid to the values requested by the UNICORE/X server. This change
is made before the TSI executes any external actions. The idenity is passed as a line in the
message string sent by the UNICORE/X server, which starts with #TSI_IDENTITY.

The TSI performs three types of work: the execution and monitoring of jobs prepared by the
user, transfer and manipulation of files on storages and the management of Uspaces (job work-
ing directory). Only the first type of work, execution of jobs, needs a complete user environ-
ment. The other two types of TSI work use a restricted set of standard commands (mkdir, cp,
rm etc) and should not require access to specific environments set up by users. Furthermore, job
execution is not done directly by the TSI but is passed on to the local Batch Subsystem which
ensures that a full user environment is set before a job is executed. Therefore, the TSI only
needs to set a limited user environment for any child processes that it creates. The TSI sets the
following environment in any child process:

• $USER This is set to the user name supplied by the UNICORE/X server.

• $LOGNAME This is set to the user name supplied by the UNICORE/X server.

• $HOME This is set to the home directory of the user as given by the target system’s password
file.

• $PATH This is inherited from the parent TSI process (see the tsi.properties file).

Localisations of the TSI will also need to set any other environment necessary to access the
BSS.

For testing, the TSI may be started as a non-privileged user, when no changing of uid and gid is
possible.
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12.4 Method dispatch

To determine which method to call, the TSI checks the message from the UNICORE/X server
for the occurrence of special tags (followed by a new line). For example, the occurrence of a
#TSI_SUBMIT tag will lead to execution of the BSS.submit() function. Before entering
any method, user/group ID switching is performed, as explained in the previous section.

12.5 Job execution and job control functions

12.5.1 Job submission (#TSI_SUBMIT)

The submit(string) function submits a user script to the BSS.

Input

As input, the script to be executed is expected. The string from the UNICORE/X server is
processed to replace all instances of $USER by the user’s name and $HOME by the user’s
home directory. No further processing needs to be done on the script.

The UNICORE/X server will embed information in the script that the TSI may need to use. This
information will be embedded as comments so no further processing is needed. Each piece of
information will be on a separate line with the format:

#TSI_<name> <value>

If the value is the string NONE, then the particular information should not be supplied to the
BSS during submission. The information is:

• #TSI_JOBNAME This is the name that should be given to the job. If this is NONE (or is
determined to be invalid), the TSI will use a default jobname.

• #TSI_PROJECT The user’s project (for accounting)

• TSI_STDOUT and #TSI_STDERR The names for standard output and error files.

• TSI_OUTCOME_DIR The directory where to write the stdout and stderr files to. In general
this is the same as #TSI_USPACE_DIR

• #TSI_USPACE_DIR The initial working directory of the script (i.e. the Uspace directory).

• #TSI_TIME The run time (wall clock) limit requested by this job in seconds

• TSI_MEMORY The memory requirement of the job. The UNICORE/X server supplies this as
a "megabytes per node" value

• #TSI_TOTAL_PROCESSORS The number of processors required by the job.

• #TSI_PROCESSORS The number of processors per node required by the job.
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• #TSI_NODES The number of nodes required by this job.

• #TSI_QUEUE The BSS queue to which this job should be submitted.

• #TSI_UMASK The default umask for the job

• #TSI_EMAIL The email address to which the BSS should send any status change emails.

• #TSI_RESERVATION_REFERENCE If the job should be run in a reservation, this parame-
ter contains the reservation ID.

• #TSI_ARRAY If multiple instances of the same job are to be submitted, this contains the list
of array IDs, e.g. "1-100", or "2,4,6".

• #TSI_ARRAY_LIMIT If multiple instances of the same job are to be submitted, this option-
ally limits the number of concurrently running instances. E.g. "5" will limit the number of
instances to "5".

• #TSI_BSS_NODES_FILTER <filterstring> Administrators can define a string in
the IDB which is to be used as nodes filter, if the BSS supports this.

In addition to these, additional site-specific resources (e.g. GPUs) can be defined on the UNI-
CORE/X server, which are passed via #TSI_SSR_<resource_name> <resource_value>
lines.

Output

• Normal: the output is the BSS identifier of the job unless the execution was interactive. In
this case the execution is complete when the TSI returns from this call and the output is that
from ok().

• Error: failed() called with the reason for failure

Raw job submission

If the instruction #TSI_JOB_MODE raw is encountered in the submit script, the TSI will
ignore any further instruction relevant for batch system submission. Instead a second instruction
#TSI_JOB_FILE <filename> determines a file that will be read and used as BSS specific
information.

12.5.2 Script execution (#TSI_EXECUTESCRIPT)

The function TSI.execute_script() executes the script directly from the TSI process,
without submitting the script to the batch subsystem. This function is used by the UNICORE/X
server to create and manipulate the Uspace, to perform file management functions, etc. The
UNICORE/X server also uses this to execute user defined code, for example when user pre-
commands or postcommands are defined in execution environments.
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Input

The script to be executed. The string from the UNICORE/X server is processed to replace all
instances of $USER by the user’s name and $HOME by the user’s home directory. No further
processing needs to be done on the script. If a #TSI_DISCARD_OUTPUT string is present, no
output will be gathered.

Output

• Normal: The script has been executed. Concatenated stderr and stdout from the execution of
the script is sent to the UNICORE/X server following the ok() call.

• Error: failed() called with the reason for failure.

12.5.3 Job control

• #TSI_ABORTJOB The BSS.abort_job() function sends a command to the BSS to abort
the named BSS job. Any stdout and stderr produced by the job before the abort takes effect
must be saved.

• #TSI_CANCELJOB The BSS.cancel_job() function sends a command to the BSS to
cancel the named BSS job. Cancelling means both finishing execution on the BSS (as for
abort) and removing any stdout and stderr.

• #TSI_HOLDJOB The BSS.hold_job() function sends a command to the BSS to hold
execution of the named BSS job. Holding means suspending execution of a job that has
started or not starting execution of a queued job. Note that suspending execution can result in
the resources allocated to the job being held by the job even though it is not executing and so
some sites may not allow this. This is dealt with by the relaxed post condition below. Some
sites can hold a job’s execution and release the resources held by the job (leaving the job on
the BSS so that it can resume execution). This is called freezing. The UNICORE/X server can
send a request for a freeze (#TSI_FREEZE) which the TSI may execute, if there is no freeze
command initialised the TSI may execute a hold in its place An acceptable implementation is
for hold_job to return without executing a command.

• #TSI_RESUMEJOB The BSS.resume_job() function sends a command to the BSS to
resume execution of the named BSS job. Not that suspending execution can result in the
resources allocated to the job being held by the job even though it is not executing and so
some sites may not allow this. An acceptable implementation is for resume_job to return
without executing a command (if hold_job did the same).

Input

All job control functions require the BSS job ID as parameter in the form #TSI_BSSID
<identifier>
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Output

• Normal: the job control function was invoked. No extra output.

• Error: failed() called with the reason for failure.

12.5.4 Detailed job info (#TSI_GETJOBDETAILS)

• #TSI_GETJOBDETAILS the BSS.get_job_details() function sends a command to
the BSS requesting detailed information about the job. The format and content is BSS spe-
cific, and is sent to UNICORE/X without any further processing.

Input

All job control functions require the BSS job ID as parameter in the form #TSI_BSSID
<identifier>

Output

• Normal: detailed job information sent via ok()

• Error: failed() called with the reason for failure.

12.5.5 Status listing (#TSI_QSTAT)

This BSS.get_status_listing() function returns the status of all the jobs on the BSS
that have been submitted through any TSI providing access to the BSS.

This method is called with the TSI’s identity set to the special user ID configured in the UNI-
CORE/X server (CLASSICTSI.priveduser property). This is because the UNICORE/X
server expects the returned listing to contain every UNICORE job from every UNICORE user
but some BSS only allow a view of the status of all jobs to privileged users.

Input

None.

Output

• Normal: The first line is QSTAT. There follows an arbitrary number of lines, each line con-
taining the status of a job on the BSS with the following format: "id status <queuename>",
where id is the BSS identifier of the job and status is one of: QUEUED, RUNNING,
SUSPENDED or COMPLETED. Optionally, the queue name can be listed as well. The out-
put must include all jobs still on the BSS that were submitted by a TSI executing on the target
system (including all those submitted by TSIs other than the one executing this command).
The output may include lines for jobs on the BSS submitted by other means.
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• Error: failed() called with the reason for failure.

12.5.6 Getting the user’s remaining compute budget (#TSI_GET_COMPUTE_BUDGET)

This BSS.get_budget() function returns the remaining compute budget for the user (in
core hours) or "-1" if not known or not applicable.

Input

None.

Output

• Normal: Budget info (format below) is sent via ok()

• Error: failed() called with the reason for failure.

Format

The output is a multiline string which each line of the form

<PROJECT> <ABSOLUTE_BUDGET> <PERCENTAGE> <UNITS>

where * PROJECT : the project / budget account name * ABSOLUTE_BUDGET : the absolute
value (integer) of compute time remaining * PERCENTAGE : the relative amount (integer, 0-
100) of compute time remaining * UNITS : the units used (should be one of: core-h, node-h,
cpu-h)

12.6 I/O functions

12.6.1 Reading a file (#TSI_GETFILECHUNK)

The IO.get_file_chunk() function is called by the UNICORE/X server to fetch the con-
tents of a file.

Input

• #TSI_FILE <file name> The full path name of the file to be sent to the UNICORE/X
server

• #TSI_START <start byte> Where to start reading the file

• #TSI_LENGTH <chunk length> How many bytes to return

The file name is modified by the TSI to substitute all occurrences of the string $USER by the
name of the user and all occurrences of the string $HOME by the home directory of the user.
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Output

• Normal: The UNICORE/X server has a copy of the request part of the file (sent via the data
socket)

• Error: failed() is called with the reason for failure.

12.6.2 Writing files (#TSI_PUTFILECHUNK)

The put_file_chunk() function is called by the UNICORE/X server to write the contents
of one file to a directory accessible by the TSI.

Input

The #TSI_FILESACTION parameter contains the action to take if the file exists (or does not):
0 = don’t care, 1 = only write if the file does not exist, 2 = only write if the file exists, 3 = append
to file.

The #TSI_FILE parameter contains the filname and permissions.

The #TSI_LENGTH parameter contains the number of bytes to read from the data channel and
write to disk.

The TSI replies with TSI_OK, and the data to write is then read from the data channel.

Output

• Normal: The TSI has written the file data.

• Error: failed() called with the reason for failure.

12.6.3 File ACL operations (#TSI_FILE_ACL)

The process_acl function allows to set or get the access control list on a given file or
directory. Please refer to the file ACL.py to learn about this part of the API.

12.6.4 Listing directories and getting file information (#TSI_LS)

This function allows to list directories or get information about a single file.

Input

The #TSI_FILE parameter contains the file/directory name.

The #TSI_LS_MODE parameter contains the kind of listing: "A" = info on a single file, "R" =
recursive directory listing, "N" = normal directory listing
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Output

• Normal: The TSI writes the listing to the command socket, see the IO.py file for a detailed
description of the format

• Error: TSI replies with TSI_FAILED and the reason for failure.

12.6.5 Getting free disk space (#TSI_DF)

This function allows to get the free disk space for a given path.

Input

The #TSI_FILE parameter contains the file/directory name.

Output

• Normal: The TSI writes the disk space info to the command socket, see the IO.py file for a
detailed description of the format.

• Error: TSI replies with TSI_FAILED and the reason for failure.

12.7 Resource reservation functions

The TSI offers functionality to create and manage reservations. These are implemented in the
file Reservation.py, different versions for different scheduling systems exist.

12.7.1 Creating a reservation (#TSI_MAKE_RESERVATION)

This is used to create a reservation.

Input

• #TSI_RESERVATION_OWNER <xlogin> The user ID (xlogin) of the reservation owner

• #TSI_STARTTME <time> The requested start time in ISO8601 format (yyyy-MM-dd’T’HH:mm:ssZ)

• The requested resources are passed in in the same way as for job submission

Output

• Normal: The command replies with a single reservation ID string.

• Error: failed() called with the reason for failure
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12.7.2 Querying a reservation (#TSI_QUERY_RESERVATION)

This is used to query the status of a reservation.

Input

• #TSI_RESERVATION_REFERENCE <reservation_ID> The reservation reference that
shall be queried

Output

• Normal: The command produces two lines. The first line contains the status (UNKNOWN,
INVALID, WAITING, READY, ACTIVE, FINISHED or OTHER) and an optional start time
(ISO 8601). The second line contains a human-readable description

• Error: failed() called with the reason for failure

12.7.3 Cancelling a reservation (#TSI_CANCEL_RESERVATION)

This is used to cancel a reservation.

Input

• #TSI_RESERVATION_REFERENCE <reservation_ID> The reservation reference that
is to be cancelled

Output

• Normal: ok() called with no special output

• Error: failed() called with the reason for failure

13 Contact

UNICORE Homepage: https://www.unicore.eu

Support mailing list: unicore-support@lists.sourceforge.net

Developers mailing list: unicore-devel@lists.sourceforge.net (needs registration)

TSI issues management: https://sourceforge.net/p/unicore/issues

Source code: https://github.com/UNICORE-EU/tsi
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