
UNICORE TSI: Manual

UNICORE TSI: MANUAL

UNICORE Team

Document Version: 1.0.0
Component Version: 6.4.1
Date: 19 09 2011

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant
Agreement Nr. INFSO-RI-261611.



UNICORE TSI: Manual

Contents

1 Overview 1

2 Prerequisites 1

3 Installation 1

3.1 Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

4 File permissions 2

5 Configuring the TSI 3

5.1 UNICORE/X configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5.2 ACL support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.3 Enabling SSL for the UNICORE/X - TSI communication . . . . . . . . . . . . 5

6 Execution model 5

7 Directories used by the TSI 6

8 Starting 6

9 Stopping the TSI 7

10 TSI logging 7

11 Scripts 7

12 Porting the TSI to other batch systems 8

13 Contact 8



UNICORE TSI: Manual 1

1 Overview

The UNICORE TSI is a Perl daemon running on the frontend of the target resource (e.g. a
cluster login node). It provides a remote interface to the operating system, the batch system and
the file system of the target resource. It is used by the UNICORE/X server to perform tasks on
the target resource, such as submitting and monitoring jobs, handling data, managing directories
etc.

The TSI performs the work on behalf of UNICORE users and so must be able to execute pro-
cesses under different uids and gids. Therefore, in production it must be run with sufficient
privileges to allow this (during development and testing it can be run as a normal user).

The TSI is one point where UNICORE’s seamless model meets local variations and so will
usually need to be adapted to the target system.

2 Prerequisites

The TSI requires Perl Version 5.004 or later. If you must use a previous version of Perl, then
you should read and change the first few lines of the "tsi" file.

3 Installation

The TSI is available either as part of the UNICORE core server bundle, or as a separate package
(such as an RPM). In the first case, the TSI files are available in the tsi/ subdirectory, in the
second case they are available in the /usr/share/unicore/tsi folder.

The TSI distribution contains TSI variations for many popular batch systems, which are avail-
able in the sub-directory "./tsi". Additional TSIs for other environments are available in sub-
directory "./tsi_contrib". These are either not tested or are intended for older batch systems.
They are provided because they might still be useful for somebody. As a rule of thumb you can
assume that those older versions require some modifications in order to work with the current
version of UNICORE - please contact the support mailing list and we can provide help.

The NOBATCH TSI is used when no batch sub-system is present. It needs also all files com-
mon to all installations from directory ./tsi/SHARED. The specific TSIs with batch sub-system
are composed of all common files from ./tsi/SHARED plus the files for the specific operation
system and/or batch sub-system, e.g. ./tsi/aix_ll

Before being able to use the TSI, you must install one of the TSI variants and configure it for
your local environment.

• Execute the installation script Install.sh and follow the instructions to copy all required
files into a new TSI installation directory.

• Adapt the "tsi" file and any other configuration as described below



UNICORE TSI: Manual 2

An essential task of the installation process is the correct setting of the file permissions which
is described in the following paragraph.

3.1 Directories

In the following, TSI_INSTALL refers to the directory where you installed the TSI. This has
the following sub-directories

Table 1: TSI Directory Layout

Name in this manual Location Description
TSI_INSTALL Base directory chosen

during execution of
Install.sh

CONF TSI_INSTALL/conf Configuration files
BIN TSI_INSTALL/bin Start/stop scripts
PERL TSI_INSTALL/perl Perl modules and helper

scripts
LOGS TSI_INSTALL/logs Log files

4 File permissions

The permissions on the TSI Perl files should be set to read only for the owner. As the TSI is
executed as root you should never leave any of these files (or the directories) writable after any
update.

Note, however, that the tsi_ls and tsi_df files must be world readable (the directory permissions
must also be set to world executable), because it has to be read from any user id when executing
a ListDirectory request.

The recommended permissions are set by executing the command been generated by a previous
call of Install.sh.

In particular, Install_permissions.sh sets the file permissions to world readable for tsi_ls and
tsi_df and world executable for the tsi_installation_directory. However, this is not sufficient.
All parent directories of tsi_installation_directory have to be world executable as well (world
readable is NOT required). For this reason, a short path to the TSI might be preferable.



UNICORE TSI: Manual 3

5 Configuring the TSI

The TSI is configured by editing the TSI files in tsi_installation_directory. Basic configuration
is done in the conf/tsi.properties file.

The further configuration has been concentrated into the "tsi" file and the part of this file that
should be changed is clearly marked. This includes the locations of the commands to interact
with the BSS. Additionally you can review the SharedConfiguration.pm file where are addi-
tional settings (common to all BSSes/OS TSI variants) which are rarely changed. Again the
configuration section is clearly marked there.

Changes outside the above described parts should not be necessary (except for new portings,
cf. next paragraph), but if they are made they should be passed on to the UNICORE develop-
ers so that they can be incorporated into future releases of the scripts (send mail to unicore-
support@lists.sf.net or use the trackers at http://sourceforge.net/projects/unicore).

The necessary changes can be different for different systems and so you should read the first
part of your "tsi" file where the required changes are marked and commented.

5.1 UNICORE/X configuration

UNICORE/X configuration is described fully in the relevant UNICORE/X manual. Here we
just give the most important steps to get the TSI up and running.

The relevant UNICORE/X config file is the XNJS config file (usually called xnjs_legacy.xml)

5.1.1 Hostnames and ports

UNICORE/X needs to know the TSI hostname and port:

<eng:Property name="CLASSICTSI.machine" value="frontend.mycluster.org"/>
<eng:Property name="CLASSICTSI.port" value="4433"/>

5.1.2 Script locations

The TSI uses the auxiliary script tsi_ls to list files. Similarly, a tsi_df file is used to report
the free disk space. These scripts are supplied with the TSI, and the UNICORE/X configuration
needs to be edited so that they can be found. This is done by specifying the full path to the
scripts in the configuration file.

In xnjs_legacy.xml file, set

<eng:Property name="CLASSICTSI.TSI_LS" value="/my_full_tsi_path/perl/tsi_ls"/>
<eng:Property name="CLASSICTSI.TSI_DF" value="/my_full_tsi_path/perl/tsi_df"/>

mailto:unicore-support@lists.sf.net
mailto:unicore-support@lists.sf.net
http://sourceforge.net/projects/unicore


UNICORE TSI: Manual 4

5.2 ACL support

The TSI (together with UNICORE/X from the version 6.4.1 up) provides a possibility to manip-
ulate file Access Control List. To use ACLs, the appropriate support must be available from the
underlying file system. Currently only the so called POSIX ACLs are supported (so called as
in fact the relevant documents POSIX 1003.1e/1003.2c were never finalized), using the popular
setfacl and getfacl commands. Most current file systems provide support for the POSIX
ACLs.

To enable POSIX ACL support you typically must ensure that:

• the required file systems are mounted with ACL support turned on,

• the getfacl and setfacl commands are available on your machine.

Configuration of ACLs is performed in the tsi.properties file. First of all you can define
a location of setfacl and getfacl programs with tsi.setfacl and tsi.getfacl
properties. By providing absolute paths you can use non-standard locations, typically it is
enough to leave the default, non-absolute values which will use programs as available under the
standard shell search path. Note that if you will comment any of those properties, the POSIX
ACL subsystem will be turned off.

Configuration of ACL support is per directory, using properties of the format: tsi.acl.PATH,
where PATH is an absolute directory path for which the setting is being made. You can provide
as many settings as required, the most specific one will be used. The valid values are POSIX
and NONE respectively for POSIX ACLs and for turning off the ACL support.

Consider an example:

tsi.acl./=NONE
tsi.acl./home=POSIX
tsi.acl./mnt/apps=POSIX
tsi.acl./mnt/apps/external=NONE

The above configuration turns off ACL for directory /tmp (/ is the most specific setting
for /tmp), turns on the POSIX ACLs for everything under /home and everything under
/mnt/apps except of /mnt/apps/external.

Warning! Do not use symbolic links or .. or . in properties configuring directories - use only
absolute, normalized paths. Currently spaces in paths are also unsupported.

5.2.1 ACL limitations

There is no ubiquitous standard for file ACLs. "POSIX draft" ACLs are by far the most popular
however there are several other implementations. Here is a short list that should help to figure
out the situation:



UNICORE TSI: Manual 5

• POSIX ACLs are supported on Linux and BSD systems.

• The following file systems supports POSIX ACLs: Lustre, ext{2,3,4}, JFS, ReiserFS and
XFS.

• Solaris ACLs are very similar to POSIX ACLs and it should be possible to use TSI to ma-
nipulate them at least partially (remove all ACL operation won’t work for sure and note that
usage of Solaris ACLs was never tested). Full support may be provided on request.

• NFS version 4 provides a completely different, and currently unsupported implementation of
ACLs.

• NFS version 3 uses ACLs with the same syntax as Solaris OS.

• There are also other implementations, present on AIX or Mac OS systems or in AFS FS.

Note that in future more ACL types may be supported and will be configured in the same
manner, just using a different property value.

5.3 Enabling SSL for the UNICORE/X - TSI communication

SSL support can be enabled for the UNICORE/X - TSI communication to increase security.

SSL is activated if the keystore file is specified in tsi.properties. Keystore and truststore must
be in pem format. When UNICORE/X connects, its certificate is checked with the CA cert. If
this cert is correctly signed and if it’s present in the truststore,

The TSI allows the connection if the following conditions are true: - the XNJS cert is valid (i.e.
has been issued by a trusted CA) - the XNJS cert is present in the truststore

In SSL mode, the TSI’s IP check is deactivated.

Technically, the SSL code uses the "IO::Socket::SSL" perl module. This module is actively
maintained and is present on the most of package managers. For example, it can be down-
loaded from the CPAN archive and installed manually. You will also require the "Net::SSLeay"
module.

On the UNICORE/X side, add a line to the "Core" section of the xnjs_legacy.xml file

<!-- enable SSL using the normal UNICORE/X key and trusted certificates -->
<eng:LoadComponent>de.fzj.unicore.uas.xnjs.XNJSSecurityConficuration</eng:LoadComponent>

6 Execution model

The TSI has two modes of execution. The first process to be started is the TSI shepherd which
will respond to UNICORE/X requests and start up TSI workers to do the work for the UNI-
CORE/X server. The TSI worker connect back to the UNICORE/X server.



UNICORE TSI: Manual 6

It is possible to use the same TSI from multiple UNICORE/X servers.

Since the TSI runs with root privileges, it must authenticate the source of commands as legit-
imate. To do this, the TSI is initialised with the address(es) of the machine(s) that runs the
UNICORE/X. The TSI shepherd will only accept requests from the defined UNICORE/X ma-
chine(s). The callback port can be pre-defined in tsi.properties as well. If it is undefined,
the TSI will attempt to read it from the UNICORE/X connect message.

Note that it is possible to enable SSL on the TSI shepherd port, see below.

If the UNICORE/X process dies any TSI workers that are connected to the XNJS will also die.
However, the TSI shepherd will continue executing and will supply new TSI processes when
the UNICORE/X server is restarted. Therefore, it is not necessary to restart the TSI daemon
when restarting UNICORE/X.

If a TSI worker stops execution, UNICORE/X will request a new one to replace it.

If the TSI shepherd stops execution, then all TSI processes will also be killed. The TSI shepherd
must then be restarted, this does not happen automatically.

7 Directories used by the TSI

The TSI must have access to the "filespace" directory specified in the IDB to hold job direc-
tories. These directories are written with the TSI’s uid set to the xlogin for which the work is
being performed and so must be world writable.

8 Starting

If installed from an Linux package, the TSI can be stopped using the init script

/etc/init.d/unicore-tsi start

The TSI can be started with or without command line arguments.

When executed with command line arguments the format is:

perl tsi njs_machine njs_port my_port

where the NJS is executing on njs_machine and is listening for TSI worker connections on
njs_port (njs_port must match the first port number in the SOURCE entry of the EXECU-
TION_TSI section in the NJS’s IDB file). A TSI process in shepherd mode will listen for NJS
requests on my_port (my_port must match the second port number in the SOURCE entry of the
EXECUTION_TSI section in the NJS?s IDB file).



UNICORE TSI: Manual 7

Alternatively, the TSI can be started without command line arguments. In this case the variables
$main::njs_machine, $main::njs_port, $main::my_port must be set in the tsi Perl file for your
system.

As a third alternative, the TSI can be started using the script "start_tsi" (cf. section Scripts).

Depending on the shell used to start the TSI it may be necessary to execute these commands
through nohup if you want to log out afterwards.

9 Stopping the TSI

If installed from an Linux package, the TSI can be stopped using the init script

/etc/init.d/unicore-tsi stop

The TSI shepherd can be killed (preferably using SIGTERM). Since this results in the killing
of all TSI processes this should only be done when the NJS has been stopped. However, under
Linux it was found that killing the TSI shepherd will not kill the TSI workers.

The TSI can also be killed using the script "kill_tsi" (cf. section Scripts). This will kill the TSI
shepherd and the tree of all spawned processes including the TSI workers.

TSI worker processes will stop executing when the XNJS stops executing.

It is possible to kill a TSI worker process but this could result in the failure of a job (but the NJS
will recover and create new TSI processes).

10 TSI logging

The TSI daemon writes log information to stdout and stderr, to save these they are usually
redirected to a file. The logging directory is configured in tsi.properties using the
tsi.logdir property. If this is set to syslog, the Linux syslog facility is used.

11 Scripts

Several scripts are available to simplify the starting (and if needed killing) of the TSI. Before
using the scripts it might be necessary to adapt the path to Perl in the scripts.

start_tsi [-d] [conf_dir]

start_tsi starts the TSI based on the evaluation of the properties file CONF/tsi.properties. The
properties file determines the path to the TSI, the NJS machine, and the ports for the connections
between TSI processes (shepherd and worker) and the NJS. If conf_dir is not specified the



UNICORE TSI: Manual 8

current working directory is searched for the properties file. An example file is available in
conf/tsi.properties.

The process number of the shepherd TSI is saved in file conf_dir/LAST_TSI_PIDS.

If the TSI does not send its log information to the NJS, it is saved in current date, time, and the
port numbers.

Option -d starts the TSI under the interactive Perl debugger.

find_pids [conf_dir]

find_pids evaluates the process number of the shepherd TSI from file conf_dir/LAST_TSI_PIDS.
It shows the tree of all child processes (including the TSI workers) which have been spawned
by the shepherd process.

kill_tsi [conf_dir]

In general, the TSI processes will be stopped through the njs_admin command tsi stop. How-
ever, there might be situations where this is no longer possible (NJS hangs, . . . ). kill_tsi uses
find_pids to determine all shepherd and worker processes (and their child processes). Finally
all these processes are killed.

../bin/list_log_files type [conf_dir]

list_log_files is identical to the scripts which are available for the Gateway and the NJS. The
script returns the names of all or some of the log files in the default logging directory conf_dir/logs.
Please read the corresponding Gateway/NJS documentation for details.

12 Porting the TSI to other batch systems

Most variations are found in the batch subsystem commands, porting to a new BSS usually
requires changes to the following files:

Submit.pm
GetStatusListing.pm

sub-directories.

It is recommended to start from a up-to-date and well-documented TSI, e.g. the linux_torque
variation. If you have further questions regarding porting to a new batch system, please use the
unicore-support or unicore-devel mailing lists.

13 Contact

UNICORE Homepage: http://www.unicore.eu

Support mailing list: unicore-support@lists.sourceforge.net

Developers mailing list: unicore-devel@lists.sourceforge.net (needs registration)

http://www.unicore.eu
mailto:unicore-support@lists.sourceforge.net
mailto:unicore-devel@lists.sourceforge.net

	Overview
	Prerequisites
	Installation
	Directories

	File permissions
	Configuring the TSI
	UNICORE/X configuration
	ACL support
	Enabling SSL for the UNICORE/X - TSI communication

	Execution model
	Directories used by the TSI
	Starting
	Stopping the TSI
	TSI logging
	Scripts
	Porting the TSI to other batch systems
	Contact

