

OpenMolGRID – A UNICORE-based System for Molecular Science and Engineering **Uko Maran** University of Tartu uko.maran@ut.ee

- Molecular engineering
- What is OpenMolGRID?
- Contributions to UNICORE
- Example
- Concluding remarks
- Chemical applications in the Grid

General application framework: Molecular Engineering

October 11, 2005

Open Computing Grid for Molecular Science and Engineering

System prototype to deal with large-scale molecular engineering problems

Specific objective of the project was to automatise, integrate and speed-up the drugdiscovery pipeline using Grid technology

www.openmolgrid.org

Forschungzentrum Jülich, Germany University of Tartu, Estonia University of Ulster, Northern Ireland Mario Negri Institute, Italy ComGenex, Inc., Hungary

> Subcontractors: OpenMolConsulting, Germany Politecnico di Milano, Italy

Sponsorship: IST-2001-37238 (EC-FP5: OpenMolGRID)

October 11, 2005

UNICORE Summit

Slide 5

People behind OpenMolGRID

- Forschungzentrum Jülich, Germany
 - Lidia Kirtchakova, Andre Latour, Mathilde Romberg, Bernd Schuller
- University of Tartu, Estonia
 - Andre Lomaka, Iiris Kahn, Mati Karelson, Uko Maran, Sulev Sild
- University of Ulster, Northern Ireland
 - Werner Dubitzky, Mykola Galushka, Jean Jing, Jesus Lopez, Damian McCourt, Rachael Tuaim, Brian Sturgeon, Lynsay Wright
- Mario Negri Institute, Italy
 - Emilio Benfenati, Mosé Casalegno, Paolo Mazzatorta
- ComGenex, Inc., Hungary
 - Istvan Bagyi, Tamas Csokona, Ferenc Darvas, Robert Ferenzi, Peter Hliva, Anna Kelemen, Peter Kormos, Akos Papp, Éva Wikonkál
- OpenMolConsulting, Germany
 - Geerd Diercksen
- Politecnico di Milano, Italy
 - Giuseppina Gini

OpenMolGRID Architecture

Integrated software

OpenMolGRID

- Data warehousing
- Chemical structure conversion (2D to 3D)
- Quantum chemical calculations
- Molecular descriptor calculation
- QSPR/QSAR model building
- Chemical structure engineering
- Grid technologies

nen Mok-R

- Orchestration of scientific applications Process automation Integrate your scientific applications into automated workflows
- Chemical Data Management
 Seamless access to distributed data resources
- Seamless QSAR/QSPR
 <u>Grid-enabled solution for modeling large and complex</u>
 <u>data sets</u>
- Molecular Engineering
 <u>Computer aided design of new compounds</u>
- Standardization of QSAR/QSPR protocols <u>Predict (bio) chemical activity/property with</u> <u>standardized models</u>
- ...

Contributions to UNICORE

- OpenMolGRID workflow support
- OpenMolGRID command-line interface (CLI)

https://sourceforge.net/projects/unicore/

- XML schema allows the high level definition of workflows
- Defined scientific processes are mapped to UNICORE job objects
- Core elements: task and dependency
 - Dependency element defines relationship between two tasks
 - *Task* defines parameters for each independent application
 - Sild, Maran, Romberg, Schuller, Benfenati OpenMolGRID: Using Automated Workflows in Grid Computing Environement. In *Advances in Grid Computing*, LNCS3470 (EGC 2005), pp464-473, 2005.

October 11, 2005

Omen Mole RT

- Parses XML workflow
- Creates UNICORE jobs
- Assigns target systems (vsite) and resources
- Automatically created tasks:
 - Data transfer from one system to other
 - Data conversion between jobs
 - Data splitting, distribution and joining
- Defines the graph of task dependencies (example will follow)

Omen Mol(-RT

Example XML workflow

```
<?xml version="1.0"?>
<!-- Model development for Solubility in Water -->
<workflow>
<task name="2Dto3Dconversion" .../>
</task>
<task name="SemiempiricalCalculation" identifier="MOPAC OPT" id="2"
export="false" split="true" splitterTask="SplitStructureList"
joinerTask="JoinStructureLists">
<option name="keywords" value="AM1 NOINTER MMOK GNORM=0.1 EF"/>
</task>
<task name="SemiempiricalCalculation" identifier="MOPAC PCalc" .../>
</task>
<task name="DescriptorCalculation" identifier="DescCalc" ...>
</task>
<task name="ModelBuilding" identifier="ModelBuild" ...>
<localInput source="H:\Unicore\test\Solub-data-water.plf" .../>
</task>
<dependency pred="1" succ="2"/><!-- 2D-3D to MOP1 -->
<dependency pred="2" succ="3"/><!-- MOP1 to MOP2 -->
<dependency pred="3" succ="4"/><!-- MOP2 to DC -->
<dependency pred="4" succ="5"/><!-- DC to MB -->
</workflow>
          Sild, Maran, Romberg, Schuller, Benfenati OpenMolGRID: Using Automated Workflows in Grid Computing
          Environement. In Advances in Grid Computing, LNCS3470 (EGC 2005), pp464-473, 2005.
```

October 11, 2005

- CLI offers AJO generation function that builds job dynamically from an XML workflow description (suns jobs, monitors them, fetches the results)
- Is based on MetaPlugin and uses full
 OpenMolGRID metadata layer (workflows in GUI
 client and CLI re inter-changeable)

Schuller, Romberg, Kirtchakova Application driven Grid developments in the OpenMolGRID Project. In *Advances in Grid Computing*, LNCS3470 (EGC 2005), pp23-29, 2005.

Omen Mole RT

Molecular Data Warewouse (MOLDW) Transformation Process

Efficient inhibition of aspartyl proteased enzyme can decrease HIV-1 *via* the production of non-infectious viral particles and this prevents the further propagation of the virus

 cluster-based factor analysis for splitting training and validation data

Maran, Sild, Kahn, Takkis Mining of the Chemical Information in GRID Environment. *Future Generation Computer Systems* (submitted)

October 11, 2005

nem MinicaRT

Modelling HIV-1 Protease Inhibitors 2/4

Maran, Sild, Kahn, Takkis Mining of the Chemical Information in GRID Environment. *Future Generation Computer Systems* (submitted)

October 11, 2005

OpenMolGRTD

Modelling HIV-1 Protease Inhibitors 3/4

Maran, Sild, Kahn, Takkis Mining of the Chemical Information in GRID Environment. *Future Generation Computer Systems* (submitted)

October 11, 2005

nen MolGRII

- The improvement of the time factor of the present modelling task due to the grid integration:
 - 1 DAY: experienced user, no grid integration, standalone applications, single CPU, manual conversions and transfer of the data between different applications;
 - 1 Hour: experienced user, grid integration, automated workflow, single CPU;
 - About 10 minutes: experienced user, grid integration, automated workflow, distributed computational resources.

Maran, Sild, Kahn, Takkis Mining of the Chemical Information in GRID Environment. *Future Generation Computer Systems* (submitted)

October 11, 2005

Molecular engineering workflow

October 11, 2005

OmenMolCERT

Fragment Library

Fragment Library

Structure Generation

- Fragments are stored in the custom data repository and are accessed like normal molecules
- Both 2D and 3D representations are supported
- Stores fragment descriptors that can be used for rapid prediction of molecular descriptor values

Prediction

October 11, 2005

Structure Generation

October 11, 2005

Prediction

Fragment Library

Structure Generation • For the candidate structures exact molecular descriptors are calculated using workflows (including 2Dto3D conversion, semi-empirical calculations, etc.).

• Using existing QSAR/QSPR models the properties and activities are predicted.

• The best candidates are selected for the final analysis in the lab.

Prediction

October 11, 2005

- UNICORE is well suited to integrate applications, but we are very much look forward for new developments (GS, etc.)
- Limitations can be reached (network quality, large number of tasks, files large than 2GB, etc.)
- Management of users (or VO) is not easy
- Abstract Interface definitions not fully exploited (custom formats)
- A lot of room for more flexible application integration (restarting workflows with changed parameters from the middle)
- Prototype is working and can be used for process automation (more testing, ...)
- Different expectations lead to misunderstandings
- Interdisciplinarity there's much to be learnt from each other
- ...

- Drug discovery,
- Chemical design,
- Material design (nanomaterials),
- Molecular modelling applications in Life Sciences,
- Problems and tasks where the time factor in decision making support is critical

Chemical applications in the grid

Middleware	Software	Grid application framework	Reference
Globus	DOCK	VLAB, Nimrod/G	[1, 2]
	Gamess	Nimrod/G	[3]
	Autodock	WISDOM	[4]
	FLEXX	WISDOM	[4]
	Gaussian98	QC Grid	[5]
	WIEN2k	ASKALON, CoG	[6]
	NAMD	BioCoRe	[7]
GridMP	THINK	Screensaver Lifesaver project	[8]
	LigandFit	Screensaver Lifesaver project	[8]
Entropia	Autodock	AIDS@Home	[9]
Condor	MOPAC 2003	WWMM	[10]
UNICORE	CPMD		[11]
	Gaussian98	BioGRID	[12]
	Gamess	BioGRID	[12]
	Amber	BioGRID	[12]
	PDB database	BioGRID	[12]
	Entrez database	BioGRID	[12]
	MOLGEO	OpenMolGRID	[13]
	MOPAC 7	OpenMolGRID	[13]
	CODESSA Pro/MDC	OpenMolGRID	[13]
	CODESSA Pro/MDA	OpenMolGRID	[13]
	NTP database	OpenMolGRID	[13, 14]
	ECOTOX database	OpenMolGRID	[13, 14]

Sulev Sild, Uko Maran, Andre Lomaka, Mati Karelson

Open Computing Grid for Molecular Science and Engineering. J. Chem. Inf. Model. (submitted)

