

Avoiding complexity in the development
of corporate grid applications

 using the REST api

Timo Strunk
Nanomatch GmbH

Talk
● Our UNICORE Use-case

– Why we require UNICORE

● Our Software until now
– Difficulties

– What went wrong, what did we learn?

● Current and Future implementations
– REST API

– UI

About Nanomatch

● Spin-off company based on Code of MMM@HPC
and the Wenzel group in KIT

● We investigate
– Thin-Film morphologies for OLED based devices

– Electron/Hole Mobilities

● Or to put this in another way
– We try to answer

● Will my TV turn on with a specific material?
● Will my TV work for more than five minutes?

mailto:MMM@HPC

DFTDFT

ParameterizerParameterizer

DepositDeposit

DFTDFT

ParameterizerParameterizer

DepositDeposit

1 – 16cpus
1 hour

64 cpus, 2 days

64 cpus
1 week

or 1000 cpus
1 day

Software

What we wanted
● UI - Click to work
● Input molecule

– Get Morphology

● Input Morphology
– Get Mobility

What we had
● Complex
● Script based

– Parameters in scripts

– Parameters as
commandline

● Some MPI programs
● Some OpenMP

→ We required a unified UI, but needed to interface directly with a cluster / grid

Other implementations

Other implementations cont.

Competitors' solutions

● Specific to grid interface
– Torque, SLURM, etc.

● ssh based
● Sometimes expensive

● Mostly modular

→ UNICORE

Parameterizer

● First success story
– Unbundling allows for

different allocations
● Geo Opt
● Point Charges

● Batch processing
● Negative Points

– Data duplication

– Addressed in WF Server
7.x

5M morphology Shredder

500 iterations

Input
5M*500
=2.5GB

Stage-In: 2.5GB

7000 jobs

1.5TB of stage-in and out

500 iterations,
roughly 10 GB stage in and out

• Stage-in and out dominate runtime
• Sheer amount of jobs not viable for an

actual application

→ We were not smart designing this

Single Application UIs
● Scientific origin of our software leads to a large

and diverse knowledge of our developers
● Most of us know Python
● Some know C++
● None know Java

● Mix of SWT and Swing
● Not everyone respects

the Gridbean-model

Solution
Generic Gridbean

Summary of our mistakes

● Workflows
– Data transfer often abused

– Non-portable, not inheritable

● Individual application GUIs
– Gridbean concept not sustainable in our group

– Java code ends up non-maintainable due to
● SWT, Swing mix
● Gridbean / non Gridbean storage

– Very slow development cycle for trivial UIs

Lessons learned

● Do not convert your existing applications into
Workflows

● Do not invest into GUIs, where none are
required (Generic Gridbean)

Current and Future Developments

● REST API allows fast new client development
● Remove development stress from the scientific

developers
– Write Input/Output specification

– Complex purely declarative GUI akin to Generic
Gridbean

● Write multiple input formats
– No Shell variables, but hierarchical

● YML, XML

Declarative Client (PySide - QT)
<Template name="Simona">

 <Section name="Box">

 <Float name="LX" hidden="False">

 0.25

 </Float>

 <Float name="LABC" hidden="True">

 0.25

 </Float>

 <Float name="LZ">

 0.25

 </Float>

 </Section>

Once you “render” the job, you get
a YML with the exact same
structure as above minus the
markup information

Workflow encapsulation
● Linear nature of declarative application GUIs

allow for workflow “concatenation”
● Workflows can be encapsulated and become

new gridbeans

Conclusions
● Past

– Large freedom in development

– Bad Choices, long development times
● Huge Appreciation for Generic Gridbean

– Custom GUIs only necessary for file preparation
● Better handled by external thread

● Present and Future
– Make a universial GUI to easily pass all parameters

required for runtime only

– Do not require any executable code for simple GUIs

Thank you for listening

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

