UNICORE DISTRIBUTED STORAGE
MANAGEMENT SERVICE



Goals

Distributed storage with the SMS interface
Consisted of the ordinary SMS storages

File transfers directly from a client to destination
SMS (without any proxy)

Usage of the standard UNICORE authorization and
authentication mechanisms

Simple architecture and easy installation



Existing solutions

Chemomentum DMS
Combines many storages into one, but...
Has custom client interface (different from SMS)

Is integrated with additional and not necessary services like Ontology
Service which are hard to separate

All transfers are done using central Data Management System Access
Service

UniRODS and UniHadoop

Interfaces to external distributed storage software (iIRODS and Apache
Hadoop)

That additional software has to be installed on all disk servers
iRODS and Apache Hadoop have their own authorization mechanisms

Internal transfer may be insecure



New solution: dSMS

New component in the existing UNICORE/X
containers called dSMS (entrypoint)

New service in grid — dCatalogue contains file
locations

Files are stored on the existing SMS storages

Clients connect to any dSMS and get access to the
same shared space



ImportFile operation in SMS

_______________



ImportFile operation in dASMS

3. LDA (chosen
SMS and file path)



ListDirectory operation in dSMS

8. Merge lists from
SMS1 and SMS2

_______________

e —

________________

e e e e e o e e e e e e e e e e e e e e e e e e e



Copy operation in dSMS




dCatalogue

Central component
Maps logical filenames to physical locations
Chooses place to store the new file

Stores ownership information and authorizes
requests

dCatalogue service
ersion: 1l.@-beta2




Security

Clients connects directly only to the dSMS (and not
to the dCatalogue)

dSMS uses trust delegation during connection to:

dCatalogue, so user can get information only about his
files

SMS, so physical files on the target system are actually
owned by the user
If malicious user omits the dSMS and connects
directly to the dCatalogue or SMS then he will have
access only to his own files.



How dCatalogue chooses destination
storage?

There is only one algorithm now: round-robin

Adding new algorithms is easy — you have to
implement only one method:

StorageEntry findSms(LogicalFilename 1lfn,
List<StorageEntry> storages, Map<String,
StorageEntry> storageByAddress) throws

NoSmsFault;

New algoritms would be useful
Eg. storing files from one directory on the same SMS

Or use information about free space, server load, etc.



Creating dSMS in Storage Factory

Storage Factory can create any type of SMS

It can create also "private” dSMSes with separate
file namespaces

Private dSMS can also store files in it's own SMS-es
created also with Storage Factory

Private

dSMS




Synchronization (experimental)

dSMS ensures basic synchronization between SMSes
and dCatalogue

If a dSMS file is removed from SMS (but not from
dCatalogue) it’'ll be automatically deleted from
dCatalogue database too

If there is a new file in SMS it’'ll be automatically
added to the dCatalogue

Synchronization is done automatically during users
requests (which may slow them down)

Synchronization can be turned off in dSMS config



dCatalogue performance

250
245 | o
2a0 | MoCaX Wi {
235 |/ A\
230 |}
225 |
220 |
215 |
210 |
205 |

EDD - L 1 1 1 1 1 1 L 1
0109 1-10°2:10° 3-10° 4-10° 5-10°6:10° 710> 8:10° 9:10°> 1:10°

files amount

operations per sec

Add —— Loolup
AddDir LoolkupDir
lsDir Remove ———

RemoveDir




dSMS performance (sync off)

operations per sec

1 2 3 4 5 5] 7 B g 10
5MS services armount

Copy — ImportFile ———
CreateDirectory — ListDirectory ———
Delete — ListProperties —
ExportFile —— Rename

Find ———



dSMS performance (sync on)

30

25

20 ¢

15 ¢

10 ¢

operations per sec

m -

1 2 3 4 5 6 7 8

10
SMS services amount
Copy — ImportFile ———
CreateDirectory —— ListDirectory ———
Delete —— ListProperties —
ExportFile —— Rename

Find



Future work

New algorithms for storage choice

Files replication
So when one storage goes down other file replicas will be accessible.

dCatalogue replication

Because right now when dCatalogue is broken down the whole dSMS
system won’t work.

Maybe replication at the level of the MySQL database?
Tools for advanced user

Eg. manual choosing file destination.
New operations for work on a group of files

Eg. Calling ChangePermissions method for all files in a directory instead
of invoking it for each file separately.



o

Any questions?



