
UNICORE DISTRIBUTED STORAGE

MANAGEMENT SERVICE

Tomasz Rękawek, Piotr Bała, Krzysztof Benedyczak



Goals

 Distributed storage with the SMS interface

 Consisted of the ordinary SMS storages

 File transfers directly from a client to destination

SMS (without any proxy)

 Usage of the standard UNICORE authorization and 

authentication mechanisms

 Simple architecture and easy installation



Existing solutions

 Chemomentum DMS

 Combines many storages into one, but…

 Has custom client interface (different from SMS)

 Is integrated with additional and not necessary services like Ontology
Service which are hard to separate

 All transfers are done using central Data Management System Access 
Service

 UniRODS and UniHadoop

 Interfaces to external distributed storage software (iRODS and Apache 
Hadoop)

 That additional software has to be installed on all disk servers

 iRODS and Apache Hadoop have their own authorization mechanisms

 Internal transfer may be insecure



New solution: dSMS

 New component in the existing UNICORE/X 

containers called dSMS (entrypoint)

 New service in grid – dCatalogue contains file 

locations

 Files are stored on the existing SMS storages

 Clients connect to any dSMS and get access to the

same shared space



ImportFile operation in SMS

Site 1

SMS



ImportFile operation in dSMS

dCatalogue

Site 1

SMS

Site 2

SMS

dSMS

2. add()

3. LDA (chosen
SMS and file path)



ListDirectory operation in dSMS

dCatalogue

Site 1

SMS1

Site 2

SMS2

dSMS

8. Merge lists from
SMS1 and SMS2



Copy operation in dSMS

Site 2

dCatalogue

Site 1

Src
SMS

Dst
SMS

dSMS



dCatalogue

 Central component

 Maps logical filenames to physical locations

 Chooses place to store the new file

 Stores ownership information and authorizes
requests



Security

 Clients connects directly only to the dSMS (and not 
to the dCatalogue)

 dSMS uses trust delegation during connection to:

 dCatalogue, so user can get information only about his 
files

 SMS, so physical files on the target system are actually
owned by the user

 If malicious user omits the dSMS and connects
directly to the dCatalogue or SMS then he will have
access only to his own files.



How dCatalogue chooses destination

storage?

 There is only one algorithm now: round-robin

 Adding new algorithms is easy – you have to 
implement only one method:

StorageEntry findSms(LogicalFilename lfn, 
List<StorageEntry> storages, Map<String, 
StorageEntry> storageByAddress) throws
NoSmsFault;

 New algoritms would be useful

 Eg. storing files from one directory on the same SMS

Or use information about free space, server load, etc.



Creating dSMS in Storage Factory

 Storage Factory can create any type of SMS

 It can create also ”private” dSMSes with separate

file namespaces

 Private dSMS can also store files in it’s own SMS-es

created also with Storage Factory

Private
dSMS

SMS

factory

Private
SMS

SMS

factoryPrivate
dSMS 4. Store files



Synchronization (experimental)

 dSMS ensures basic synchronization between SMSes
and dCatalogue

 If a dSMS file is removed from SMS (but not from
dCatalogue) it’ll be automatically deleted from
dCatalogue database too

 If there is a new file in SMS it’ll be automatically
added to the dCatalogue

 Synchronization is done automatically during users
requests (which may slow them down)

 Synchronization can be turned off in dSMS config



dCatalogue performance



dSMS performance (sync off)



dSMS performance (sync on)



Future work

 New algorithms for storage choice

 Files replication

 So when one storage goes down other file replicas will be accessible.

 dCatalogue replication

 Because right now when dCatalogue is broken down the whole dSMS
system won’t work.

 Maybe replication at the level of the MySQL database?

 Tools for advanced user

 Eg. manual choosing file destination.

 New operations for work on a group of files

 Eg. Calling ChangePermissions method for all files in a directory instead
of invoking it for each file separately.



Any questions?

Thank you!


