
UNICORE DISTRIBUTED STORAGE

MANAGEMENT SERVICE

Tomasz Rękawek, Piotr Bała, Krzysztof Benedyczak



Goals

 Distributed storage with the SMS interface

 Consisted of the ordinary SMS storages

 File transfers directly from a client to destination

SMS (without any proxy)

 Usage of the standard UNICORE authorization and 

authentication mechanisms

 Simple architecture and easy installation



Existing solutions

 Chemomentum DMS

 Combines many storages into one, but…

 Has custom client interface (different from SMS)

 Is integrated with additional and not necessary services like Ontology
Service which are hard to separate

 All transfers are done using central Data Management System Access 
Service

 UniRODS and UniHadoop

 Interfaces to external distributed storage software (iRODS and Apache 
Hadoop)

 That additional software has to be installed on all disk servers

 iRODS and Apache Hadoop have their own authorization mechanisms

 Internal transfer may be insecure



New solution: dSMS

 New component in the existing UNICORE/X 

containers called dSMS (entrypoint)

 New service in grid – dCatalogue contains file 

locations

 Files are stored on the existing SMS storages

 Clients connect to any dSMS and get access to the

same shared space



ImportFile operation in SMS

Site 1

SMS



ImportFile operation in dSMS

dCatalogue

Site 1

SMS

Site 2

SMS

dSMS

2. add()

3. LDA (chosen
SMS and file path)



ListDirectory operation in dSMS

dCatalogue

Site 1

SMS1

Site 2

SMS2

dSMS

8. Merge lists from
SMS1 and SMS2



Copy operation in dSMS

Site 2

dCatalogue

Site 1

Src
SMS

Dst
SMS

dSMS



dCatalogue

 Central component

 Maps logical filenames to physical locations

 Chooses place to store the new file

 Stores ownership information and authorizes
requests



Security

 Clients connects directly only to the dSMS (and not 
to the dCatalogue)

 dSMS uses trust delegation during connection to:

 dCatalogue, so user can get information only about his 
files

 SMS, so physical files on the target system are actually
owned by the user

 If malicious user omits the dSMS and connects
directly to the dCatalogue or SMS then he will have
access only to his own files.



How dCatalogue chooses destination

storage?

 There is only one algorithm now: round-robin

 Adding new algorithms is easy – you have to 
implement only one method:

StorageEntry findSms(LogicalFilename lfn, 
List<StorageEntry> storages, Map<String, 
StorageEntry> storageByAddress) throws
NoSmsFault;

 New algoritms would be useful

 Eg. storing files from one directory on the same SMS

Or use information about free space, server load, etc.



Creating dSMS in Storage Factory

 Storage Factory can create any type of SMS

 It can create also ”private” dSMSes with separate

file namespaces

 Private dSMS can also store files in it’s own SMS-es

created also with Storage Factory

Private
dSMS

SMS

factory

Private
SMS

SMS

factoryPrivate
dSMS 4. Store files



Synchronization (experimental)

 dSMS ensures basic synchronization between SMSes
and dCatalogue

 If a dSMS file is removed from SMS (but not from
dCatalogue) it’ll be automatically deleted from
dCatalogue database too

 If there is a new file in SMS it’ll be automatically
added to the dCatalogue

 Synchronization is done automatically during users
requests (which may slow them down)

 Synchronization can be turned off in dSMS config



dCatalogue performance



dSMS performance (sync off)



dSMS performance (sync on)



Future work

 New algorithms for storage choice

 Files replication

 So when one storage goes down other file replicas will be accessible.

 dCatalogue replication

 Because right now when dCatalogue is broken down the whole dSMS
system won’t work.

 Maybe replication at the level of the MySQL database?

 Tools for advanced user

 Eg. manual choosing file destination.

 New operations for work on a group of files

 Eg. Calling ChangePermissions method for all files in a directory instead
of invoking it for each file separately.



Any questions?

Thank you!


