

Domain-oriented services and resources of Polish Infrastructure for Supporting Computational Science in the European Research Space - PLGrid Plus

Data Storage Solution Using PL-Grid UNICORE Infrastructure

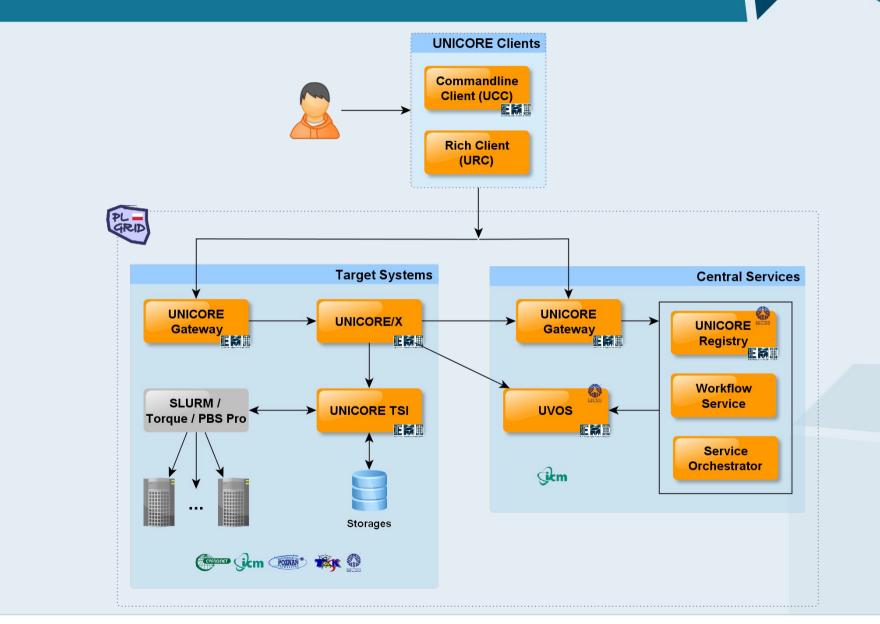
P.Bała, K.Benedyczak, M.Borcz, <u>R.Kluszczyński</u>, G.Marczak, M.Stolarek

ICM, University of Warsaw

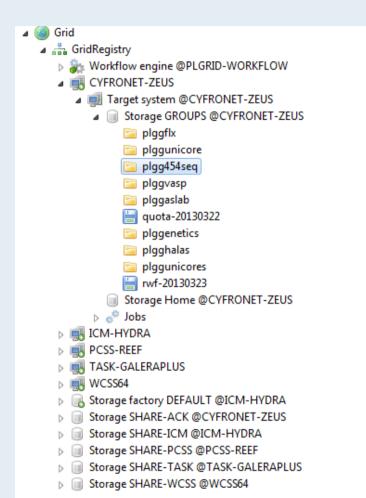
PL-Grid

- National Grid Initiative
- Partners:
 - Polish supercomputer centers
 - CYFRONET, ICM, PCSS, WCSS, TASK

UNICORE


- UNICORE Operating Center located in ICM
- Installed in all partners centers
 - UNICORE Gateway, UNICORE/X, TSI
- Central services
 - UNICORE Registry, UVOS, Workflow System (ICM)
 - Backup copy of Registry and UVOS (WCSS)

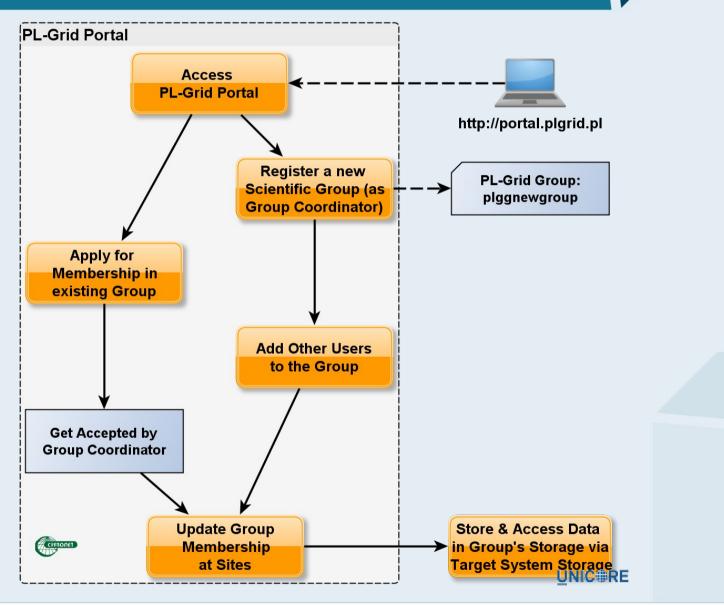
UNICORE Infrastructure


UNICORE Summit 2013 Leipzig, Germany, June 18th

PL-Grid Storages

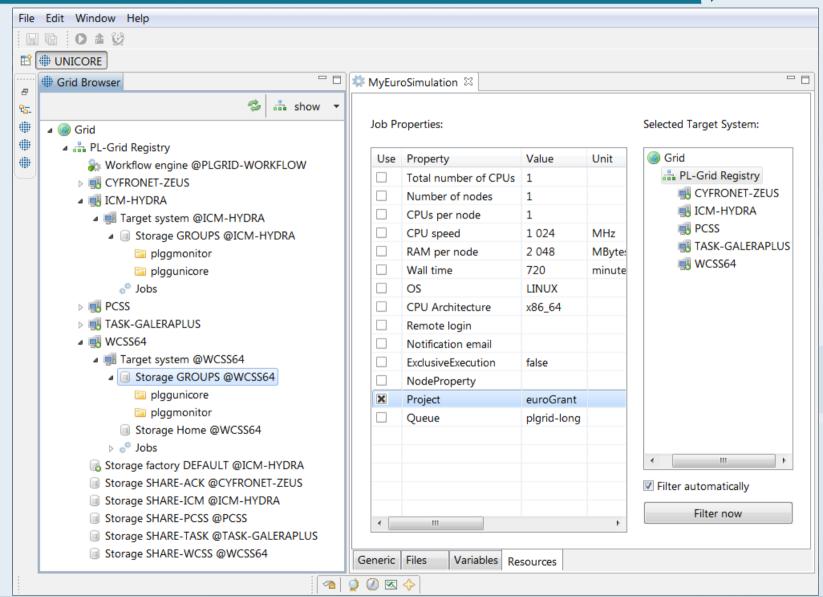
GRID

- UNICORE at PLG have 3 types of storages:
 - Home storage
 - Groups storage
 - Global storage
- PL-Grid offers support for scientific groups
 - Separate documents folder, forum and wiki portlets in PL-Grid portal
 - Storage accessible by all group members (via Target System Storage)
- Users can form a scientific groups:
 - Every group has a coordinator
 - Grants are assigned per scientific groups (max. walltime, storage size)



PL-Grid Scientific Groups

5



Groups and Grants in URC

UNICORE Summit 2013 Leipzig, Germany, June 18th

Home and Global Storages

- Group directories are said to be reliable for users
- UNICORE/X provides access to Home storage
 - Accessible as Target System Storage
 - Available also during computations
 - This is usually the same physical device which is available as a UI's home directory for gLite users
 - This is also officially reliable storage (backup)
- At every site there is also configured Global Storage
 - Additional storage for UNICORE users
 - Easy UNICORE access via Registry
 - The goal of this storage is similar to group directories
 - Located mostly on fast filesystem
- ICM provides also Storage Factory (i.e. workflow processing)

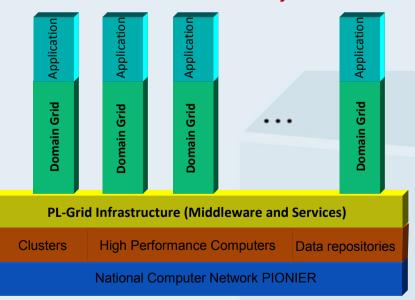
PL-Grid Plus

- The main aim is to increase potential of the Polish Science by providing the necessary IT services for research teams in Poland, in line with European solutions
- Five PL-Grid Consortium Partners:

Project Coordinator: Academic Computer Centre CYFRONET AGH

- The Project most important task is preparation of specific computing environments so called *Domain Grids* – i.e. solutions, services and extended infrastructure, tailored to the needs of different groups of scientists
- 3 domain grids have almost ready platforms, others are still testing solutions and approaches (most of them will use one of available middlewares)

UNICORE Summit 2013 Leipzig, Germany, June 18th



PL-Grid Plus Tasks

9

- Design and deploy Domain Grids solutions for scientific-domain related services, tools and software packages for 13 identified scientific domains
- Extensions of resources available in the PL-Grid infrastructure by ca. 500 TFlops of computing power and ca. 4.4 PBytes of storage capacity
- Design and start-up of support for new domains grids
- Deployment of Quality of Service system for users by introducing SLA agreement
- Deployment of new infrastructure services
- Deployment of Cloud infrastructure for users
- Broad consultancy, traning and dissemination offer

UNICORE Summit 2013 Leipzig, Germany, June 18th R.Kluszczyński

Advanced Service Platforms

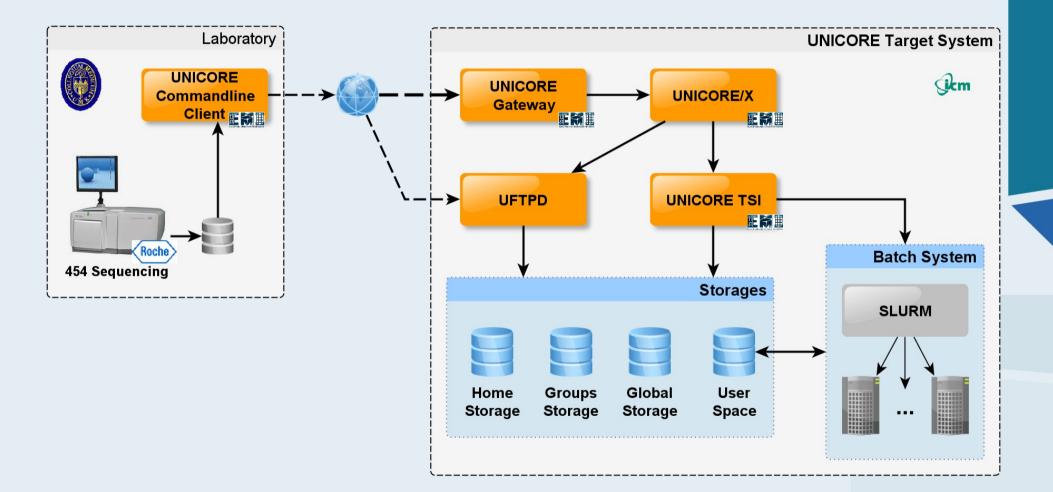
Bioinformatics Domain Grid

- First almost ready domain-specific solution prepared at ICM
- Main tasks so far:
 - Bring FLX application included in Roche Instrument software on the Grid
 - Design and prepare data analysis workflow
 - Prepare safe storage solution for experiments data
 - Design handling and storing data from Roche instruments
- Observations:
 - There is an interest in solutions for storing data
 - Analysis is usually run by user which prepared workflow there is a need for easier way of handling worklows (sharing, running)
 - There are questions about handling metadata this still needs some tests

UNICORE Summit 2013 Leipzig, Germany, June 18th

10

Experiments


Partners:

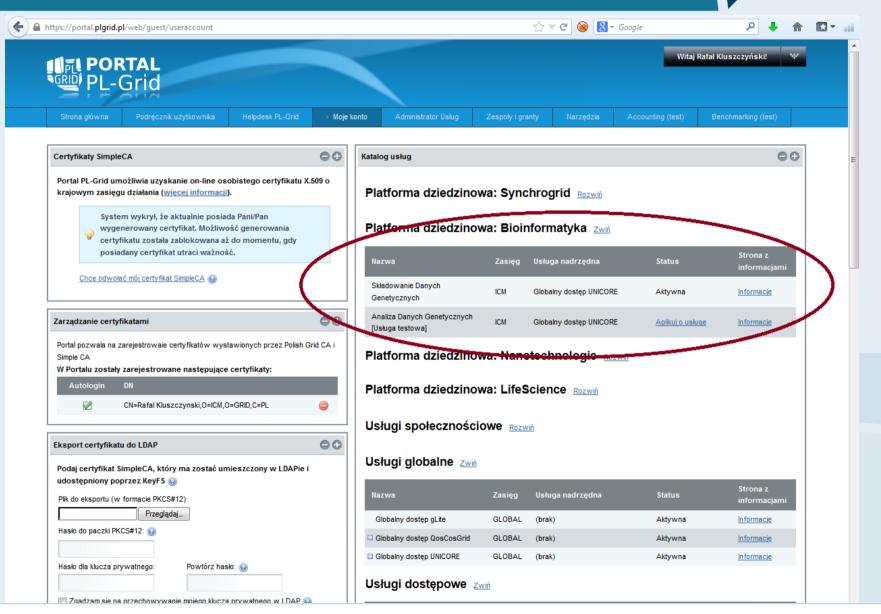
- Department of Molecular and Forensic Genetics, Institute of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University
- The Postgraduate School of Molecular Medicine, Medical University of Warsaw
- ICM, University of Warsaw
- Medical University of Warsaw
- GS FLX Instrument (Roche Diagnostics) and its software
 - Analysis of patients' mtDNA having colorectal cancer (mutation identification)
- Illumina HiSeq 1500 Instrument
 - Every run is expensive and takes up to several days
 - Safe and secure data storage needed

Genetic Data Analysis – Experiment

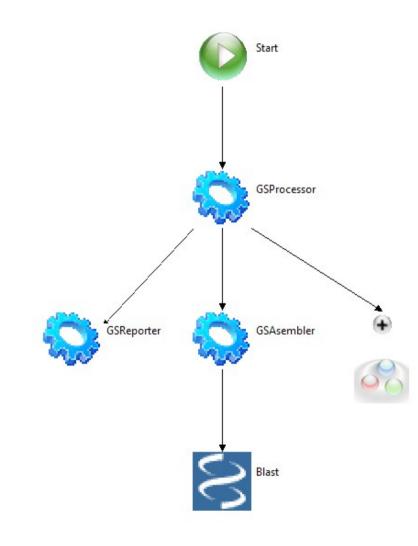
UNICORE Summit 2013 Leipzig, Germany, June 18th

Genetic Data Analysis – Getting Access

13


- Every domain service has to be activated by users via PL-Grid Portal
 - Domain services have their own documentation
 - Portal may trigger additional actions like assigning to particular group or activate other dependency services
- Genetic Data Analysis
 - Needs to have active: UNICORE Global Access
 - Assigns to group *plggflx*
 - Restrict access to software
 - Group directory contains workflow template
- In order to use, user needs to:
 - Register in PL-Grid portal
 - Activate access of domain service: Genetic Data Analysis
 - Download URC, get workflow template and run analysis

Getting Domain Service Access



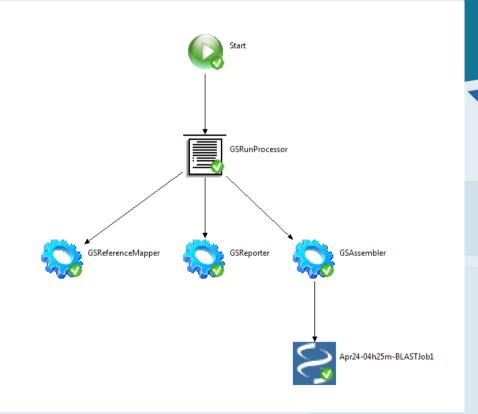
UNICORE Summit 2013 Leipzig, Germany, June 18th

Genetic Data Analysis – Workflow

UNICORE Summit 2013 Leipzig, Germany, June 18th

Genetic Data Analysis – Speed up

- The most time consuming part of analysis pipeline is GS Run Processor
- Table below show significant speedup for 64 cores comparing to single core run
- Different execution time for different processors
 - Internal Cache Size


Processor type	Cache size	Interconnect	Number of cores	Time
				(hours)
Intel	1024 kB	none	1	70.0
Xeon CPU @ 3.60GHz				
AMD Interlagos	2048 kB	Gigabit	64 (1 x 64 cores)	6.5
Opteron Processor 6272 @ 2.10GHz				
AMD	512 kB	Gigabit	64 (8 x 8 cores)	4.5
Opteron Processor 6174 @ 2.20GHz			96 (8 x 12 cores)	4.5
Intel	12288 kB	Infiniband	64 (8 x 8 cores)	2.5
Xeon CPU, X5660 @ 2.80GHz			96 (8 x 12 cores)	2.5

UFTP Data Transfer

- Single sequencing experiment generates ca. 30 GB of data
- Organized in 834 files of the size about 33 MB each
- In order to gain reasonable upload time UFTP protocol is a must
- Example of input data size for workflow atomic jobs:
 - GSRunProcessor: 27 GB (PIF files)
 - GSReferenceMapper: 3.2 GB (SFF files)
 - GSReporter: 2.5 GB (CWF files)
 - GSAssembler: 3.2 GB (SFF files)
 - BLAST: result may have up to 6 GB (FASTA file)

UFTP Transfer Statistics

- As for now UFTP was mostly used to automate files upload
 - Almost ready to use it also during workflow's stage-(in/out)s
- Experiments upload statistics (last months)
 - Only receiving transfers over 30 MB in size
 - About 1,600 of uploads (mostly 33MB PIF files), most of them used 4 streams
 - Average upload transfer: 10.7 MB/s
 - Files of size about 33MB 10.6 MB/s
 - Files with size over 10GB 11.1 MB/s
 - Avarage time of one file: 3.04 s
- iperf shows 20MB bandwith between endpoints
 - Still needs to check where it is reduced

Data Storage Requirements

- GRID GRID
- Roche instruments generate genetic data for every experiment
 - Every experiment costs so those are expensive data sets
- Usually storage capacity included with machine does not exceed 3 or 4 experiments
- Requirements for genetic data:
 - It should allow for automatic and fast upload
 - Access to data during computations should be possible
 - Transfer and access should be secure
 - Only partners should have access to data (confidentiality)
 - Safe and realiable backup policy

External Storage for Genetic Data

- Genetic Data Storage domain service has been initially prepared for storing data generated by Roche instrument
 - Cost of every experiment and large data size results in the need of storing them using external stable storages in secure and safe way
- As an eternal backup service PLATON U4 has been used
 - Ensures safety and replication of data
 - Security provided by X509 certificates
 - Data access using FUSE (sshfs)
- Experiment data sets
 - Stored as a single archive per experiment
 - Encrypted using OpenSSL to provide requested confidentiality

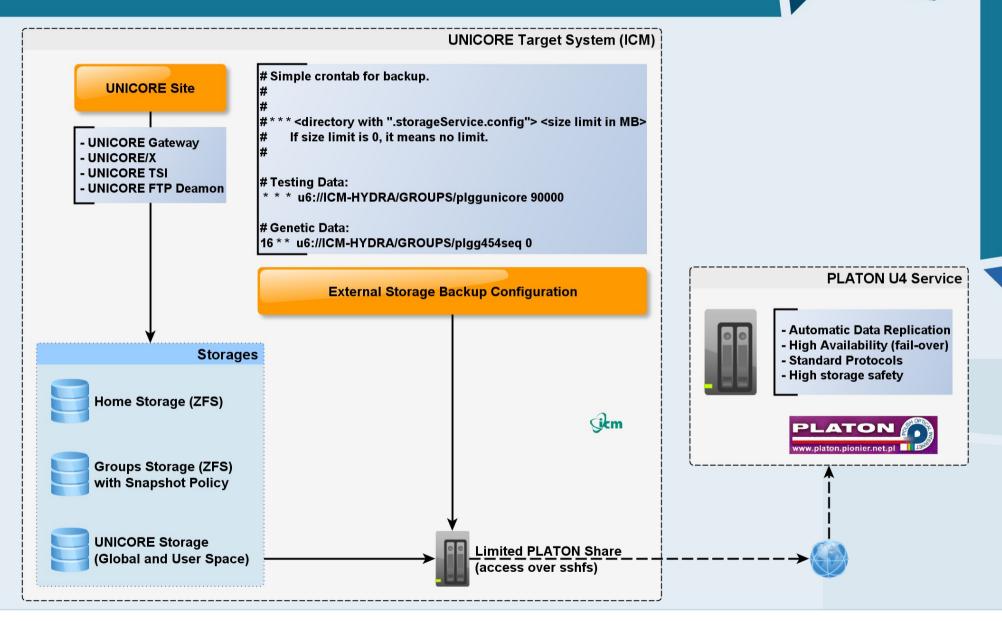
PLATON U4 Service

- Reliable data storage facility with easy and efficient access and replication
 - Automatic and transparent data and meta-data replication
 - Fail-over among multiple redundant components
 - Standard protocols including SFTP and WebDAV
 - High storage safety and security thanks to support for end-to-end data encryption, data integrity control, SSL-protected data transmission and security procedures employed at storage sites
- Deployed in the environment of Polish Optical Network PIONIER that offers 10Gbit channels for the data access and replication
- Main target users include the scientific and academic community in Poland, digital libraries, cultural heritage institutions and public administration

http://storage.pionier.net.pl/en/

Genetic Data Storage – Features

GRID GRID


- User has access to official PL-Grid storages via UNICORE
 - Home directories (standard Linux filesystem)
 - Groups directories (standard Linux filesystem)
- Every user may upload/download data with the help of UNICORE
 - Available protocols: BFT and multistreaming UFTP
 - Encryption should be enabled during the transfers
- Multi-level backup
 - Data stored on official PL-Grid storage (accessible by user at any time)
 - Storage snapshot run daily/weekly (may be accessible by user)
 - Backup to external storage (Platon U4) based on user request (access only by contacting with administrator)
- Data stored within external services are additionally encrypted

Handling Genetic Data Diagram

Genetic Data Storage – User PoV

- Registration in PL-Grid portal and activation of "Genetic Data Storage" domain service
- User requests for safe storage backup using HelpDesk
- Administrators verify the user and his purpose
- Determination of backup parameters:
 - Data localization (which type of storage: Home or GROUPS)
 - Backup frequency
 - Data size limit
- Administrators add entry to configuration and confirm that the service is ready
- User determines via simple configuration file which subdirecotires located at chosen storage will have external backup
- User verifies if backup was successful by checking log file located in his storage after every time the backup process was run

Group's Backup Configuration

iiii: UNICORE Rich Client	
**	
File Edit Window Help	
Grid Browser	□ □ 📄 .storageService.config 🛛
8	
ଷ୍ଟ ୍ର 🖧 👬 st	<pre>www * # Example configuration file for storage</pre>
🏥 🔺 🎯 Grid	All Services group folder @ ICM
🐞 🔺 📥 PL-Grid Registry	Execution Services and Storages
Workflow engine @PLGRID-WORKFLOW	Files User-defined file filter
CYFRONET-ZEUS ICM-HYDRA	Target Systems V Hidden files
a 📑 Target system @ICM-HYDRA	lobs) In U4 storage service;
▲ 📄 Storage GROUPS @ICM-HYDRA	Workflows
a 📴 plggunicores	irectories which
🔚 test.txt	Workflow Services .d be changed to
🚞 RAW_DATA	# disable accidental deletion and # modification by your
📄 RESULTS	<pre># modification by user.</pre>
important	# Directory entries for Platon U4 backup:
snapshot	#
storageService.config	backup.1 = RAW_DATA/
	backup.2 = RESULTS/
 b 🔄 plggunicore b 🧊 Storage Home @ICM-HYDRA 	# Directory entries for blocking changes:
Jobs	# Directory entries for blocking changes.
PCSS	blockChanges.1 = IMPORTANT/
TASK-GALERAPLUS	
⊳ 🛃 WCSS64	
🐻 Storage factory DEFAULT @ICM-HYDRA	
Storage SHARE-ACK @CYFRONET-ZEUS	
Storage SHARE-ICM @ICM-HYDRA	
Storage SHARE-PCSS @PCSS	
Storage SHARE-TASK @TASK-GALERAPLUS Storage SHARE WCSS @WCSS64	
Storage SHARE-WCSS @WCSS64	

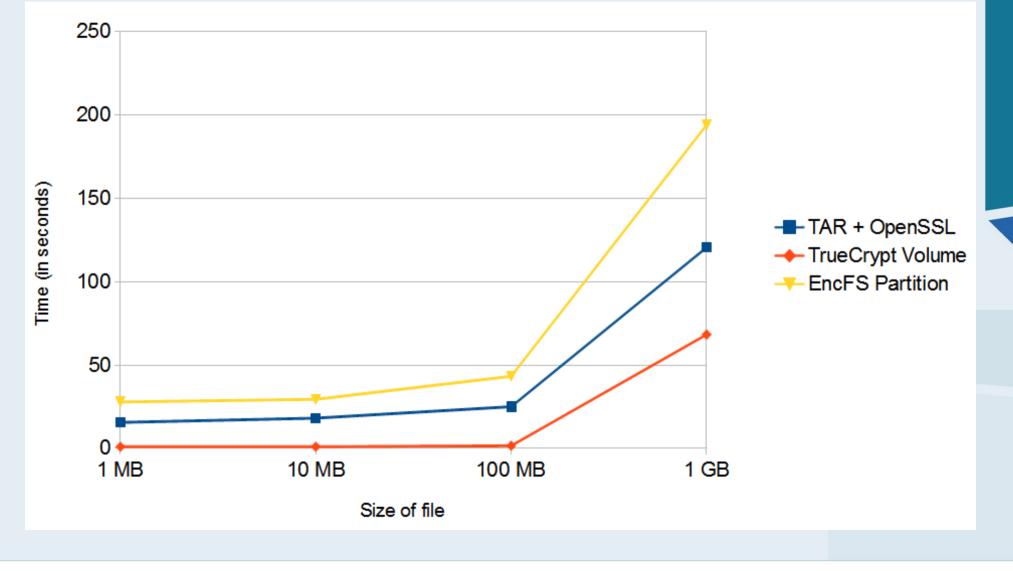
Backup Observations

- When using TAR+OpenSSL (enc)
 - Changing one file forces backup of whole subdirectory
 - Whole process should be faster (at least when there are changes of few files)
- Some latest results
 - 217 GB \rightarrow about 6h 27'
 - 229 GB → about 10h 30'
 - 218 GB \rightarrow about 6h 40'
 - 257 GB \rightarrow about 8h 41'
- Slow process
 - Need to check network connection (find bootlenecks)
 - OpenSSL encryption reduces speed almost by half
- Check some other solutions: TrueCrypt / EncFS (over PLATON share)

Tests using PLATON U4 Storage

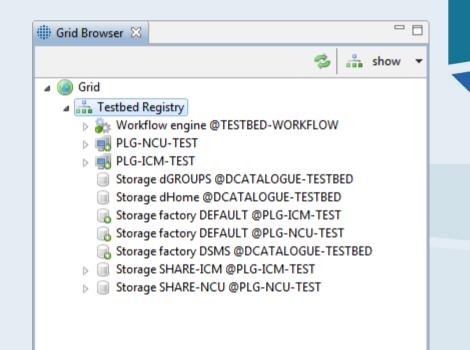
TrueCrypt 7.1a

- Created 2GB (normal) volume as Linux Ext4 file system
- AES encryption algorithm, RIPEMD-160 has algorithm
- Using password, no keyfile


EncFS 1.7.4-1

- Using standard configuration during setup
- Filesystem cipher: "ssl/aes", version 3:0:2
- Filename encoding: "nameio/block", version 3:0:1
- Key size: 192 bits, block size: 1024 bytes
- Each file contains 8 byte header with unique IV data.
- Filenames encoded using IV chaining mode.
- TrueCrypt volume and EncFS raw data stored directly on PLATON U4 storage (sshfs)

Time Comparision of Single File



UNICORE Summit 2013 Leipzig, Germany, June 18th

Summary

- Data problem is becoming more and more important
- Distributed Storage Managment Service (DSMS)
 - Still have some issues (many tests were made)
 - It works as a proxy to SMSes, it won't be fast
 - Allows easy access to Target System Storages
- Issues we will look at:
 - SMS metadata access
 - UFTP server-to-server transfers (also as a part of workflows)

Thank You for Attention

- Questions
- Remarks
- Ideas
- ■?

