

Grid Computing

IBM LoadLeveler and IBM GPFS Multicluster *Unicore Summit*

Europe Design Center for On Demand Business Solution Architect Jean-Yves Girard

Agenda

GPFS and LoadLeveler Multi-Cluster

DEISA Project

Implementation details

GPFS 2.3

- Each FS belongs to one "owning" cluster, responsible for
 - administration
 - lock management
 - recovery
- "Remote" nodes can mount FS and
 - request locks
 - access data & metadata directly over the SAN
 - do not participate in quorum or administration.
- Disk access is through NSD or an external disk facility (FC/IP, iSCSI ...)
- Cluster manager detects node failures and drives recovery
- Global configuration data published via local configuration data.
- Security: disk access controlled by SAN; non-SAN data and controls through SSL
- UID mapping for file access control on remote nodes
- Scaling by limiting protocol traffic to "active" nodes
- Failure detection using GPFS disk leasing/heartbeating outside that set of machines.

LoadLeveler 3.3 extensions

- Provide users the capability to submit jobs to more than one LoadLeveler clusters easily. This includes accessing a Linux cluster from an AIX cluster, and vice versa.
- Facilitate workload balancing across multiple clusters
- Address scalability issue as the size of clusters exceeds the currently supported limit
- Security
- Preemption
- Advanced reservation
- Processor/Memory Scheduling Affinity on Power4/5 MCMs

Agenda

GPFS and LoadLeveler Multi-Cluster

DEISA Project

Implementation details

LL/GPFS MC Architecture for DEISA

Extending LL/GPFS MC Grid

Dedicated bandwidth network. GEANT, RENATER, DFN, GARR, ...

National supercomputing platforms IDRIS - France JULICH - Germany GARCHING - Germany CINECA - Italy

SARA – The Netherlands CSC - Finland

Extended Grid services :

Portals, Web-like services, ... Interfacing the core platform to other virtual organizations. Hiding complex environments from end

users

Agenda

GPFS and LoadLeveler Multi-Cluster

DEISA Project

Implementation details

9

LoadLeveler Multi-Cluster exits

Examples

- This example moves the idle job silver.11 from the local cluster to the remote cluster cluster1:
 - -llmovejob -C cluster1 -j silver.11

User Management

- GPFS calls external plug-in to map client UID to global name, global name to file system UID/GID GPFS caches mapping so subsequent checks are fast <u>http://www-1.ibm.com/servers/eserver/clusters/whitepapers/uid_gpfs.html</u> mmchconfig enableUIDRemap=yes

- Each site controls and manages access to its resources
 - Certificates authenticates remote cluster access
- Root id cannot be mapped by LoadLeveler
- GPFS maps root to nobody via mmuid2name and mmname2uid scripts
- Access Control List
- Local administrators can blocks incoming jobs and decide if a job must be migrated

GPFS Howto

On Cluster_A

 Generate public/private key pair mmauth genkey creates public key file with default name id_rsa.pub start GPFS daemons after this command!
 Enable authorization mmchconfig cipherList=AUTHONLY

3. Sysadm gives following file to Cluster_B /var/mmfs/ssl/id_rsa.pub rename as cluster_A.pub

7. Authorize Cluster_B to mount FS owned by Cluster_ mmauth add cluster_B -k cluster_B.pub

On Cluster_B

4. Generate public/private key pair mmauth genkey

creates public key file with default name id_rsa.pub start GPFS daemons after this command!

5. Enable authorization mmchconfig cipherList=AUTHONLY

6. Sysadm gives following file to Cluster_A /var/mmfs/ssl/id_rsa.pub rename as cluster_B.pub

8. Define cluster name, contact nodes and public key for cluster_A mmremotecluster add cluster_A -n nsd_A1,nsd_A2,nsd_A3,nsd_A4 -k Cluster_A.pub

9. Identify the FS to be accessed on cluster_A mmremotefs add /dev/fsAonB -f /dev/fsA -C Cluster_A -T /dev/fsAonB
10. mount FS locally mount /fsAonBc

LL Howto

- 1. Create the SSL authorization keys by invoking the llclusterauth command with the -k option on all gateway nodes. Result: LoadLeveler creates a public key, a private key, and a security certificate for each gateway node.
- 2. Distribute the public keys to gateways on other secure clusters. This is done by exchanging the public keys found in /var/load/ssl/id_rsa.pub file with the other clusters you wish to communicate with.
- Copy the public keys of the clusters you wish to communicate with into the authorized_keys directory on your inbound schedd nodes. (for AIX, /var/loadl/ssl/authorized_keys v for Linux, /var/opt/LoadL/ssl/authorized_key). The authorization key files can be named anything within the authorized_keys directory.
- 4. Define the cluster stanzas within the LoadLeveler administration file, using the multicluster_security = SSL keyword. Define the keyword ssl_cipher_list if a specific OpenSSL cipher encryption method is desired. Use secure_schedd_port to define the port number to be used for secure inbound transactions to the cluster.
- 5. Notify LoadLeveler daemons by issuing the llctl command with the recycle keyword. Otherwise, LoadLeveler will not process the modifications you made to the administration file.
- 6. Configure firewalls to accept connections to the secure_schedd_port numbers you defined in the administration file.

ON DEMAND BUSINESS[®]

ibm.com

Jean-Yves Girard

SGB Solution Architect Europe Design Center for On Demand Business girardjy@fr.ibm.com + 33 4 67 34 45 39