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Abstract

Developing applications for solving compute intensive problems is not trivial. And despite recent
availability of a range of Grid computing platforms, domain specialist programmers and scientists only
rarely take advantage of these new computing facilities. One reason for this is the complexity of Grid
computing, and the need to learn a new programming environment to interact with the Grid. Typically,
only a few programming languages are supported, and often scientists use special-purpose languages
that are not supported by most Grid platforms. Moreover, Grid users cannot easily deploy their
compute tasks to multiple Grid platforms without rewriting their program to use different task
submission interfaces. In this paper we present Stroll, a universal file system-based interface for
seamless task submission to one or more Grid computing facilities. The user interacts with the Grid
through simple read and write file-system commands. Stroll allows all categories of users to submit
and manage compute tasks both manually, and from within their

programs, which may be written in any language. We have implemented Stroll on both Windows and
Linux, and we demonstrate that we can submit the same compute tasks to both Condor and Unicore
clusters. In the evaluation, we show that the overhead of Stroll is negligible. We also compare the
code complexity of the compute task, written using our Stroll interface with an implementation using a
custom Java-based Grid API.

To submit jobs to a Grid system you need to learn how to:

1. Prepare your input files 2. Write a detailed submission script. 3. Submit your jobs through the front end.
4, Monitor the execution. 5. Collect the results.

Do scientists have time for this ?

/ Current Solutions \
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Grid Portals WebSphere, WebLogic, Useful for manual submission. In many cases, it is required
GridSphere, GridPortlets to perform job submission automatically from a user code.
Web Services Birdbath (condor), GRAM The programming language has to support the technology
(Globus), GridSAM and the user must have the proper experience. This is not
the case for many low level special purpose languages and
Grid APIs DRMAA, HiLA, CondorAPI, GridR |, /st of the scientists
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Proposed Solution

Grid Access File system Interface (Stroll)

submission and management of grid jobs is carried out by executing simple read() and write() file
system commands.

> This technique allows all categories of users to submit and manage grid jobs both manually and from
\ their codes which may be written in any language.
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Secure LAN Model (SLM) \
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Task Structure
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Performance evaluation
(UNICORE)
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CPU utilization of R process during the execution of a parallel version PSM.estimate() statistical
modeling function on UNICORE




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7

