STROLL: A Universal Filesystem-based Interface
for Seamless Task Deployment

Abdulrahman Azab, Hein Meling, Josef Kejzlar
University of Stavanger

Abstract

Developing applications for solving compute intensive problems is not trivial. And despite recent
availability of a range of Grid computing platforms, domain specialist programmers and scientists only
rarely take advantage of these new computing facilities. One reason for this is the complexity of Grid
computing, and the need to learn a new programming environment to interact with the Grid. Typically,
only a few programming languages are supported, and often scientists use special-purpose languages
that are not supported by most Grid platforms. Moreover, Grid users cannot easily deploy their
compute tasks to multiple Grid platforms without rewriting their program to use different task
submission interfaces. In this paper we present Stroll, a universal file system-based interface for
seamless task submission to one or more Grid computing facilities. The user interacts with the Grid
through simple read and write file-system commands. Stroll allows all categories of users to submit
and manage compute tasks both manually, and from within their

programs, which may be written in any language. We have implemented Stroll on both Windows and
Linux, and we demonstrate that we can submit the same compute tasks to both Condor and Unicore
clusters. In the evaluation, we show that the overhead of Stroll is negligible. We also compare the
code complexity of the compute task, written using our Stroll interface with an implementation using a
custom Java-based Grid API.

To submit jobs to a Grid system you need to learn how to:

1. Prepare your input files 2. Write a detailed submission script. 3. Submit your jobs through the front end.
4, Monitor the execution. 5. Collect the results.

Do scientists have time for this ?

/ Current Solutions \

T B = R B—

Grid Portals WebSphere, WebLogic, Useful for manual submission. In many cases, it is required
GridSphere, GridPortlets to perform job submission automatically from a user code.
Web Services Birdbath (condor), GRAM The programming language has to support the technology
(Globus), GridSAM and the user must have the proper experience. This is not
the case for many low level special purpose languages and
Grid APIs DRMAA, HiLA, CondorAPI, GridR |, /st of the scientists

A 4
p

Proposed Solution

Grid Access File system Interface (Stroll)

submission and management of grid jobs is carried out by executing simple read() and write() file
system commands.

> This technique allows all categories of users to submit and manage grid jobs both manually and from
\ their codes which may be written in any language.

~

4

System Architecture

. 5. Grid C Front End
Client-Server o rid Consumer (Front Enc) Secure LAN
Model rE R Model
Local Users Script Native Application
[4. File-system interface
I —-— — — _. _____ q I —-— — — _- _____ 1 \
. | Linux 1 Windows I
= Command Windows
. "_'3 "_'3
1)
3 3. STROLL
C
>. ___________ STROLL > §
&
o 2. Grid Client(s)
< Eeeee®
x

"""""""""""""""""""

/ Environment \

_Stroll Peers

~_" i l'..
Users Stroll Server

)

Secure LAN Model (SLM) \

P
=
ﬁ I

¥

D |

—
Dt

12

;&

l

/
2w
)~
!

@)
\L\rrl\, rrl\,’ //l/

8

l

)
2’ 2

—

. z
Dz
|

Stroll Server

wer Machines

SLM Architecture

STROLL

" Vitwal
Virtual Sterage

ES Interface
Grid Clients

ES command
@ vaseaseanseas handler

Local / Network

User mode
Kernel mode

Physical

CallBack/FUSE
VES Engine

|

|

Winedows/ISmuxsemel :
=

I

\\

Stroll-C

/
&
(1

/

Stroll-C

/

/i /e
Eg}@ ;s»,e/}@
()\ / 1

Stroll-C

i stroll-C S

il

/
: (

User Machines

Client Server Model (CSM)

Stroll Server

CSM Architecture

MAPI/POP3

Mail Server

Client

Local ES Interface

.............................. N

E Virtual
]| storage

STROLL-C :

Client

FTP/SFTP
Stub 3

ES Events handler

CallBack/FUSE
File-system

Kermel

—

STROLL- S

ETP/SETP.
Server

FTP/SFTP
Root

FS watcher

‘ Grid
Drivers

Grid Clients

Server

Task Structure

taskDir I
i et By
o0 0 I U)
— — i GJ
< ; config I =
el -y 1E
IDUO”I oo e .." I 5
| oo confi 5
0 ’I g control : 2
=
.OOO I U)

|
— |- status _

|
13
- executable | =
. I (_“3
Other taskDirs <Task files> I'g
12
<Inputs> o
X
Il »n
E j ©
I —

|

_ _<_OLJt_putSZI>

—— e o e e e e = e e e = o = =

ol I N I D D D D

3 - - - - - - - - -

L 1 1 N 1 1
S . T T T T T 1T 1., T T T T1
[} - - - —— - - - - - - - - -

—

______ T4 _ _T7_ _T8_ _To_ _Ti2 _ T3 _Tie _config _ _ _ T3 _T5_ _Ti4_ _ Iz_ _config
3 _ S e e

9 %T3: Nesting Task imy creom o e Teom

©
L
o+
i B
)
o)
..«m T T Fb\ \Nv/
= 2 % :
)
= 5% = :
= A = 2 :
= S & ' g2 :
m 33 : § 3 =
= g $ 5 : 3 :
: i E : 5 2 2
: & : Z 8 3
g & || :
: <
> 1]
= 168
o
_ : Les L68
- 3 - £I8. 2 === -y =T ers
: : s = = = R ET
: - sa. S84
m m st 15
: s 6CL
> = ﬂ
: ££9 25
o O
E £c9 £L9
: E : = St9
- g m s L19
: 2 E o 685
2 8 : 195 195
m m = EES
505 S0S
- (0]
E e . | w Lib
S ..hL v e
5 : i 1Zv
£ : = £6¢
o 5 o .
< mw = LEE
% S 187 e
% m = 1814
m ; £ €ST
c 161 ot
L et L61
: m 61 691
- ot 4
m : £ £11
uﬁlm : - S8
N oo ¢ -
= c 2 £ 2 .H . . _ d
s = 2 g 8 o = " ° 3 _ -
= % ppayas Jopuod Ag uonezi|l g m m m : m :
>3 NEZINN NdD% i i - - i :
2 8 (ax) ppayass Jopuos Aq adesn Alowa

w mw w mw
& & S =
5 £ 5 £
° 3 c ° 3 c
a T = a = =]
| : | :
O O
(&) (&)
X X
L L

L et = = L= ==] T2m

S [T O R gy s - p2iy

6801 £50T

LSOT -

STot €66

£E06 196

T96

626
168
598
£E8
108
69¢
LEL
so¢
€49 e

609 609
5SS ars
180 e
(3 L
£ Liv
cag SBE
£5¢ £SE
TZE TZE
68T 68T
152 L5
[d ST
€61 €61
191 191
62T 621
LG L6

59 59
£E Aﬁnlh EE
L L | | I | 1 | I

Performance evaluation
(UNICORE)

h

0

(=] (=] f=1 =1 = o o (=] =]
o o0 ~ o [y - o] ~ =

100
400000
350000
300000
250000
200000
150000
100000

50000

enel Aq uonezin NdJ2%
(ax) anel Aq adesn Asowa

CPU utilization of R process during the execution of a parallel version PSM.estimate() statistical
modeling function on UNICORE

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7

