A Client Side Scheduler for UNICORE Based on HILA

Abdulrahman Azab
University of Stavanger
abdulrahman.azab@uis.no

/ Abstract \

The scheduling problem is specified by a set of workers, a set of tasks, an
optimality criterion, environmental specifications, and by other constraints. The
goal of a scheduling policy is to find an optimal schedule in the environment and
to satisfy all constraints. The two main scheduling techniques are: centralized
and decentralized. The main drawback of centralized scheduling is the central
failure, which makes it non-practical for implementation in P2P and non-
dependable environments. Decentralized scheduling is to locally schedule jobs
to suitable workers from the client node. In this work, we propose a client side
scheduler and Grid client for UNICORE based on HiLA API. The scheduling
process is composed of two main steps: 1) gathering the resource information
about TSs from the associated registry, and 2) assign submitted jobs to suitable

\TSS through adaptive matchmaking. /

@:heduling Mechanism

Decentralized Scheduling scenario

Client
Get Worker — Scheduler 0 \
Specifications || w1 |5 () A2 §
Workers 1 W2 S List i W4 %& Distributor
2 4 = Manager W3 | 8
. 3 W3 (@ % WL |~
Monitor [« . @ |
o o
\k 3 » Attribute | Subtask
N J Requester @ @ Manager
_____________________ 7 I I
{ | Task
"| Manager
\Subtask Pool | ||Matchmaker /

4

@:heduling Mechanism

Matchmaking

Task requirements

— Client Degree of Matching
Worker Capabilities I

—y Matchmaker

=0>T
Worker Matchmaker ?Suitab.;;‘e

Task requirements

Client
Matchmaker

<0 - False
(Not Suitable)

Worker Capabilitie Degree

Of
Matching

@:heduling Mechanism \

Matchmaking
Worker Capabilities:

Worker capabilities are calculated within a collection of time units
{TU()>TU(@ + NTU(T)) }, as follows:

Available CPU (VC) [MHz].

Uy, (W,VC,1,d,NTU (T)), o, (W,VC,i,d,NTU (T))
Available Memory (VM) [MBytes]

1, (W,VM,i,d,NTU (T)), o, (W,VM,i,d, NTU (T))

Number of Failures (NF)

NF,, (w,1,d,NTU (T)) = Max(NF(w, j,d))

@:heduling Mechanism \

Matchmaking
Task Requirements:

Task resource requirements are calculated from the resource usage of
previous executions

CPU Cycles (CC (T)) [MCycles]
UC (T, w, e) = % Processor time of (w) used by (T) at execution (e)

CPU Time of (T,e) = UC(T,w,e) * Total execution time of (T) [sec]
CC(T, e) = CPU Time of (T,e) [sec] * CPU Speed of (w) [MHZz]
m(T,CC) = Median(CC(T,e)) {e=123,.. ,E;}

Used Memory (UM (T)) [MBytes]

UM(T) = (Input data of (T) [MBytes] + Output data of (T) [MBytes] +
Intermediate data during execution of (T) [MBytes]) [MBytes]

< 4

@:heduling Mechanism \

Fuzzy Matchmaking approach (FMA)

The fuzzy matchmaking approach is implemented based on
fuzzy model.

The following steps will construct the fuzzy inference process:
1.Fuzzification of Inputs.

2.Applying Fuzzy Operator.

3.Applying Implication Method.

4 .Defuzzification.

< 4

@:heduling Mechanism
Fuzzy Matchmaking approach (FMA)

1. Fuzzification of Inputs

Each available worker (w) within the collection of
will have a set represented by

™

. An input membership function is included for

each parameter concerning

The input membership functions can be described as follows:

Free CPU(x,w,i,d, NTU(T)) = exp—[x;“c&:’\(/"i’/'gf’; dN%l(JT()T)))j

Free_ Memory(x,w,i,d, NTU(T)) = exp—[x_ﬂ‘”(w’wv| 14, NTU(T))}

o, (W,VM, i, d, NTU(T))

4

6cheduling Mechanism \

Fuzzy Matchmaking approach (FMA)

1. Fuzzification of Inputs

The input values to the fuzzification process can be described as follows:
m(T,CC)

NTU (T)xTU

Re quired _ Memory (T)=UM (T)

Required CPU (T) =

) T w2 w3 wl 1 T w3wl w2
09t P /\i . 0.9t n
o 08F : . o 08f
< = \ =
o o7f s s 07r
@ : 5 o)
= 2 2
5 06 . GE) 0.6
= : =
‘o 05f : 1 © 05
o . ; o)
8 [] (O] :
> 04F . / - 5) 0.4*;
A . : 0] H
03f : o 1 © oa3}i
0.2} s k] : 02
013 _ _ - ____ . :
01F - . 0.1f;
; i RV 0.012 § L L
0 500 1000 1500 2000 2500 3000 3500 0 100 200 300 400 500 600 700 800 900 1000

1447 25 _
CPU Speed MHz Memory size MBytes

@:heduling Mechanism \

Fuzzy Matchmaking approach (FMA)
2. Applying Fuzzy Operator

A separate rule will be created for each worker included in the
matchmaking

If Required_ CPU(T) Is Free_CPU(wj))
AND Required_Memory(T) Is Free_Memory(wj)
THEN Suitable_Worker(T) = ID(wj})

j=1,2,..., N
N: number of workers

The rule weight is specified as a function of the number of failures:

RW w1, d. NTUT) = e j NTU (T))

< 4

@:heduling Mechanism \

Fuzzy Matchmaking approach (FMA)

3. Applying Implication Method

The consequent of a rule is an output fuzzy set represented by an
output membership function.

The output membership function associated with each fuzzy set will
be in the form of a unique identifier of the associated worker

Value[ID(w2)]
Q' value[IDW3)]
: Q
0 : 0 0 0
— i i 55— S

ID(wl) ID(w2) ID(w3) ID(w4) ID(w5) ID(w6)

4. Defuzzification

wut = MAX (value [ID(w1l)], value [ID(wW2)],... , value [ID(wn)]) /

Scheduling Mechanism
Fuzzy Matchmaking approach (FMA)

Rulel(w1l) if Required_CPU(T) Is Free_CPU(w1)

[AND Required_Memory(T) Is Free_Memory(w1)

InpUt 1 Then Suitable_Worker(T) = ID(w1)

RU|92W2 If Required_CPU(T) Is Free_CPU(w2)

AND Required_Memory(T) Is Free_Memory(w2)
Then Suitable_Worker(T) = ID(wW2)

Input 2
Memory [Mbytes]

Rule6(w6) if Required_CPU(T) Is Free_CPU(w6)

AND Required_Memory(T) Is Free_Memory(w6)
Then Suitable_Worker(T) = ID(w6)

f Output

| ID(Worker)

Scheduling Mechanism
Simplified Fuzzy Matchmaking approach (SFMA)

Useful for use on the where workers are PCs and
of worker machines is expected.

Efficient for scheduling tasks.

Input membership functions:

-

i(/C i d X< /ucur (W’VC, |)
Free_CPU(x,W,i,d):4ﬂcur(W, i, d)
t 0 X >ty (W,VC, i)
(X |
i X< /ucur (W1VM) |)
Free_ Memory(x, w,i,d) = #eor (:VM.1.)
~ 0 X> Heur (W1VM) |)

w,,. (W,VC,i,d) = u(w,VC,i—1,d)
cur (W’VM) i’ d) = ﬂ(WvVM ,i _1; d)

X
/ Free _CPU(X,w,i) =< 2500 A \

0 X > 2500

Required CPU (T)=1400

T W

Q 1 E 1 I h

E 1

) I

g 08¢ |

= |

S |

2 0.6 -

o 05T — 7 |

@ |

v :

S, 04¢ |

(b : .

a |

n2t | -
|
|:| | | 140®I | II | 1
\ 0 500 1000 1500 2000 2500 3000 3500 4000 /
CPU Speed MHz

Performance Evaluation

Performance evaluation of the proposed decentralized

scheduling mechanism based on (SFMA)

1. Parallel Execution Scheduling performance for 2400x2400 matrix size

5)
NUMBEY o peduling Subtask ~ secpu ZoMemor Execution - r ;e
O \VIEGEIIEIN Iricles tllizztior) uirme (Szcoricls)
SLO SIS utilization | (Secornicls)
1 99.07 86.3
SFMA 631 900
2 94.4 60.1
2
1 52.1 58.4
Traditional 794 900
2 96.3 81.8
1 98.6 54.3
SFMA 2 99.3 54.8 440 600
3 99.1 54.2
3
1 99.7 88.7
Traditional 2 99.2 88.6 600
3 52.4 58.2

Performance Evaluation

Performance evaluation of the proposed decentralized
scheduling mechanism based on (SFMA)

1. Parallel Execution Scheduling performance for 2400x2400 matrix size

Nurroer YoNVlemor | Execiiion

Seraculing | Sugiask %CPU . NTUCT)
o \Vlecriarlissr) EEX Ltjlizatior J ulrig (Secornicls)
SLOTEIS S yiilization | (S2corcls)
1 99.2 87.55
SEMA 2 98.4 87.3
377.8 500
3 97 88.1
4 60.8 98.9
4
1 96.5 86.54
2 99.5 87.4
Traditional 500
3 98 87.2
4 59.3 71.5

Performance Evaluation

Performance evaluation of the proposed decentralized
scheduling mechanism based on (SFMA)

1. Parallel Execution Scheduling performance for 2400x2400 matrix size

Number % Memor Execution

2 I?/Icehci\daunl ::r?] S:an(;[?ik ufi/loigai%n y LUgis (g;gr(l-cllz)
subtasks utilization (Seconds)

1 99.33 55.5
2 98.9 88.7

SFMA 3 79.5 87.4 354 400
4 64.3 76.7
5 50.9 56.5
° 1 58.6 72.3
2 99.8 85.7

Traditional 3 515 55.9 400

4 98.5 87

5 92.7 87.6

Performance Evaluation

Performance evaluation of the proposed decentralized

scheduling mechanism based on (SFMA)
1. Parallel Execution Scheduling performance for 2400x2400 matrix size

")
NUMBEr oopeduling Subtask ~ oecpy 7oMemor Execution gy
Of VIEGIEIIEIN Iricles tllizztior) J e (Secoricls)
SLIOTEIS IS villization | (S2corcls)
1 99.5 87.3
2 98.7 89.4
3 98.8 88
SFMA 319 400
4 72.4 79.9
5 51.3 57.4
6 50.6 84.1
6
1 99.8 89.6
2 99.7 87.4
3 99 73.6
Traditional 400
4 99.2 88.2
5 51.3 57.6
6 98.4 87.7

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

