
A Client Side Scheduler for UNICORE Based on A Client Side Scheduler for UNICORE Based on HiLAHiLA
Abdulrahman Azab

University of Stavanger
abdulrahman.azab@uis.no

Abstract

The scheduling problem is specified by a set of workers, a set of tasks, an
optimality criterion, environmental specifications, and by other constraints. The
goal of a scheduling policy is to find an optimal schedule in the environment and
to satisfy all constraints. The two main scheduling techniques are: centralized
and decentralized. The main drawback of centralized scheduling is the central
failure, which makes it non-practical for implementation in P2P and non-
dependable environments. Decentralized scheduling is to locally schedule jobs
to suitable workers from the client node. In this work, we propose a client side
scheduler and Grid client for UNICORE based on HiLA API. The scheduling
process is composed of two main steps: 1) gathering the resource information
about TSs from the associated registry, and 2) assign submitted jobs to suitable
TSs through adaptive matchmaking.

Decentralized Scheduling scenarioDecentralized Scheduling scenario

Scheduling MechanismScheduling Mechanism

MonitorMonitorMonitor

W1
W2
W4
W3

W2
W4
W3
W1

Attribute
Requester

MatchmakerMatchmaker

Monitor

Initial List

M
odified List

List
Manager

SchedulerScheduler

111222

333

444

555

666

ClientClient

WorkersWorkers 1234

DistributorDistributor777

Subtask Pool

Subtask
Manager
Subtask
Manager
Subtask
Manager
Subtask
Manager

Task
Manager

777

Get Worker Get Worker
SpecificationsSpecifications

Client
Matchmaker

Task requirements

Worker Capabilities
Degree of Matching

Client
Matchmaker

Task requirements

Worker Capabilities Degree
Of

Matching

>=0 True
(Suitable)

<0 False
(Not Suitable)

Worker Matchmaker

MatchmakingMatchmaking

Scheduling MechanismScheduling Mechanism

Worker Capabilities:Worker Capabilities:

MatchmakingMatchmaking

Scheduling MechanismScheduling Mechanism

))(,,,,()),(,,,,(TNTUdiVCwTNTUdiVCw ovov σμ

))(,,,,()),(,,,,(TNTUdiVMwTNTUdiVMw ovov σμ

Available CPU (VC) [MHz].Available CPU (VC) [MHz].

Available Memory (VM) [Available Memory (VM) [MBytesMBytes]]

)),,(())(,,,(djwNFMaxTNTUdiwNFov =

Number of Failures (NF)Number of Failures (NF)

Worker capabilities are calculated within a collection of time units
{TU(i) TU(i + NTU(T)) }, as follows:

Task Requirements:Task Requirements:

Scheduling MechanismScheduling Mechanism

CPU Cycles (CC (T)) [CPU Cycles (CC (T)) [MCyclesMCycles]]

Used Memory (UM (T)) [Used Memory (UM (T)) [MBytesMBytes]]

Task resource requirements are calculated from the resource usage of
previous executions

CC(T, e) = CPU Time of (T,e) [sec] * CPU Speed of (w) [MHz]

UC (T, w, e) = % Processor time of (w) used by (T) at execution (e)

},...,3,2,1{)),((),(fEeeTCCMedianCCTm ==

UM(T) = (Input data of (T) [MBytes] + Output data of (T) [MBytes] +
Intermediate data during execution of (T) [MBytes]) [MBytes]

MatchmakingMatchmaking

CPU Time of (T,e) = UC(T,w,e) * Total execution time of (T) [sec]

Scheduling MechanismScheduling Mechanism

The fuzzy matchmaking approach is implemented based on TakagiTakagi--
SugenoSugeno fuzzy model.

The following steps will construct the fuzzy inference process:

1.1.FuzzificationFuzzification of Inputs.of Inputs.

2.2.Applying Fuzzy Operator.Applying Fuzzy Operator.

3.3.Applying Implication Method.Applying Implication Method.

4.4.DefuzzificationDefuzzification.

Fuzzy Matchmaking approach (FMA)Fuzzy Matchmaking approach (FMA)

Scheduling MechanismScheduling Mechanism

Each available worker (w) within the collection of Each available worker (w) within the collection of TUsTUs {{TU(i)TU(i) TU(iTU(i + +
NTU(T)) }NTU(T)) } will have a will have a separate fuzzyseparate fuzzy set represented by set represented by two two
membership functionsmembership functions. An input membership function is included for . An input membership function is included for
each parameter concerning each parameter concerning worker capabilitiesworker capabilities. .

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

))(,,,,(
))(,,,,(exp))(,,,,(_

))(,,,,(
))(,,,,(exp))(,,,,(_

TNTUdiVMw
TNTUdiVMwxTNTUdiwxMemoryFree

TNTUdiVCw
TNTUdiVCwxTNTUdiwxCPUFree

ov

ov

ov

ov

σ
μ

σ
μ

The input membership functions can be described as follows:The input membership functions can be described as follows:

1.1. FuzzificationFuzzification of Inputsof Inputs

Fuzzy Matchmaking approach (FMA)Fuzzy Matchmaking approach (FMA)

Scheduling MechanismScheduling Mechanism

The input values to the The input values to the fuzzificationfuzzification process can be described as follows:process can be described as follows:

)()(_Re
)(

),()(_Re

TUMTMemoryquired
TUTNTU

CCTmTCPUquired

=
×

=

1.1. FuzzificationFuzzification of Inputsof Inputs

0.13

1447

w1w2 w3T

CPU Speed MHz

D
eg

re
e

of
 M

em
be

rs
hi

p

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.012

25

w1 w2w3T

Memory size MBytes

D
eg

re
e

of
 M

em
be

rs
hi

p

Fuzzy Matchmaking approach (FMA)Fuzzy Matchmaking approach (FMA)

2.2. Applying Fuzzy OperatorApplying Fuzzy Operator

Scheduling MechanismScheduling Mechanism

A separate rule will be created for each worker included in the
matchmaking

IfIf Required_CPU(T) IsIs Free_CPU(wj)
ANDAND Required_Memory(T) IsIs Free_Memory(wj)

THENTHEN Suitable_Worker(T) = ID(wj)

j = 1,2,j = 1,2,……,N,N

The rule weight is specified as a function of the number of failures:

))(,,,(
1))(,,,(

TNTUdiwNF
TNTUdiwRW

ov

=

N: number of workersN: number of workers

Fuzzy Matchmaking approach (FMA)Fuzzy Matchmaking approach (FMA)

Scheduling MechanismScheduling Mechanism

3.3. Applying Implication MethodApplying Implication Method

The consequent of a rule is an output fuzzy set represented by an
output membership function.

The output membership function associated with each fuzzy set will
be in the form of a unique identifier of the associated worker
[[ID(wjID(wj) j = 1, 2, 3,) j = 1, 2, 3,……, N]. , N].

4.4. DefuzzificationDefuzzification

Output = MAX (value [ID(w1)], value [ID(w2)],… , value [ID(wn)])

ID(w1) ID(w2) ID(w3) ID(w4) ID(w5) ID(w6)

Value[ID(w2)]
Value[ID(w3)]

0 0 0 0

Fuzzy Matchmaking approach (FMA)Fuzzy Matchmaking approach (FMA)

Scheduling MechanismScheduling Mechanism

Input 1
CPU [MHz]

Input 1
CPU [MHz]

Input 2
Memory [Mbytes]

Input 2
Memory [Mbytes]

Rule1(w1) If Required_CPU(T) Is Free_CPU(w1)
AND Required_Memory(T) Is Free_Memory(w1)

Then Suitable_Worker(T) = ID(w1)

Rule2(w2) If Required_CPU(T) Is Free_CPU(w2)
AND Required_Memory(T) Is Free_Memory(w2)

Then Suitable_Worker(T) = ID(w2)

Rule6(w6) If Required_CPU(T) Is Free_CPU(w6)
AND Required_Memory(T) Is Free_Memory(w6)

Then Suitable_Worker(T) = ID(w6)

ΣΣ
Output

ID(Worker)
Output

ID(Worker)

Fuzzy Matchmaking approach (FMA)Fuzzy Matchmaking approach (FMA)

Scheduling MechanismScheduling Mechanism
Simplified Fuzzy Matchmaking approach (SFMA)Simplified Fuzzy Matchmaking approach (SFMA)

Useful for use on the InternetInternet where workers are PCs and ruffling ruffling
consumption levelconsumption level of worker machines is expected.

Efficient for scheduling short runningshort running tasks.

Input membership functions: Input membership functions:

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤
=

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤
=

),,(0

),,(
),,,(),,,(_

),,(0

),,(
),,,(),,,(_

iVMwx

iVMwx
diVMw

x

diwxMemoryFree

iVCwx

iVCwx
diVCw

x

diwxCPUFree

cur

cur
cur

cur

cur
cur

μ

μ
μ

μ

μ
μ

),1,,(),,,(
),1,,(),,,(
diVMwdiVMw

diVCwdiVCw

cur

cur

−=
−=

μμ
μμ

T

0.56

w

1400

CPU Speed MHz

D
eg

re
e

of
 M

em
be

rs
hi

p
⎪⎩

⎪
⎨
⎧

>

≤=
25000

2500
2500),,(_

x

xx
iwxCPUFree

1400)(_Re =TCPUquired

Performance EvaluationPerformance Evaluation

1.1. Parallel Execution Scheduling performance for 2400x2400 matrix sParallel Execution Scheduling performance for 2400x2400 matrix sizeize

Performance evaluation of the proposed decentralized Performance evaluation of the proposed decentralized
scheduling mechanism scheduling mechanism based on (SFMA)based on (SFMA)

NTU(T) NTU(T)
(Seconds)(Seconds)

Execution Execution
time time

(Seconds)(Seconds)

%Memor%Memor
y y

utilizationutilization

%CPU %CPU
utilizationutilization

Subtask Subtask
indexindex

Scheduling Scheduling
MechanismMechanism

Number Number
Of Of

subtaskssubtasks

900631
86.399.071

SFMA

2
60.194.42

900794
58.452.11

Traditional
81.896.32

600440

54.398.61

SFMA

3

54.899.32

54.299.13

600778

88.799.71

Traditional 88.699.22

58.252.43

Performance EvaluationPerformance Evaluation

1.1. Parallel Execution Scheduling performance for 2400x2400 matrix sParallel Execution Scheduling performance for 2400x2400 matrix sizeize

Performance evaluation of the proposed decentralized Performance evaluation of the proposed decentralized
scheduling mechanism scheduling mechanism based on (SFMA)based on (SFMA)

NTU(T) NTU(T)
(Seconds)(Seconds)

Execution Execution
time time

(Seconds)(Seconds)

%Memor%Memor
y y

utilizationutilization

%CPU %CPU
utilizationutilization

Subtask Subtask
indexindex

Scheduling Scheduling
MechanismMechanism

Number Number
Of Of

subtaskssubtasks

500377.8

87.5599.21

SFMA

4

87.398.42

88.1973

98.960.84

500575

86.5496.51

Traditional
87.499.52

87.2983

71.559.34

Performance EvaluationPerformance Evaluation

1.1. Parallel Execution Scheduling performance for 2400x2400 matrix sParallel Execution Scheduling performance for 2400x2400 matrix sizeize

Performance evaluation of the proposed decentralized Performance evaluation of the proposed decentralized
scheduling mechanism scheduling mechanism based on (SFMA)based on (SFMA)

NTU(T)
(Seconds)

Execution
time

(Seconds)

%Memor
y

utilization

%CPU
utilization

Subtask
index

Scheduling
Mechanism

Number
Of

subtasks

400354

55.599.331

SFMA

5

88.798.92

87.479.53

76.764.34

56.550.95

400502

72.358.61

Traditional

85.799.82

55.951.53

8798.54

87.692.75

Performance EvaluationPerformance Evaluation

1.1. Parallel Execution Scheduling performance for 2400x2400 matrix sParallel Execution Scheduling performance for 2400x2400 matrix sizeize

NTU(T) NTU(T)
(Seconds)(Seconds)

Execution Execution
time time

(Seconds)(Seconds)

%Memor%Memor
y y

utilizationutilization

%CPU %CPU
utilizationutilization

Subtask Subtask
indexindex

Scheduling Scheduling
MechanismMechanism

Number Number
Of Of

subtaskssubtasks

400319

87.399.51

SFMA

6

89.498.72

8898.83

79.972.44

57.451.35

84.150.66

400439

89.699.81

Traditional

87.499.72

73.6993

88.299.24

57.651.35

87.798.46

Performance evaluation of the proposed decentralized Performance evaluation of the proposed decentralized
scheduling mechanism scheduling mechanism based on (SFMA)based on (SFMA)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

