DEISA - Easy Integration of HPC-Systems with UNIC®RE

Distributed European Infrastructure for Supercomputing Applications

Andrea Righi a.righi@cineca.it

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

- DEISA Introduction
- GRID: logical layout and UNICORE
- Account management
- UNICORE configuration
- Job submission
- UNICORE availability

- DEISA Introduction
- GRID: logical layout and UNICORE
- Account management
- UNICORE configuration
- Job submission
- UNICORE availability

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

DEISA

It is a consortium

 of leading national supercomputing centers in Europe

Focuses

- deploying an innovative GRID empowered infrastructure to enhance and reinforce High Performance Computing (HPC) in Europe
- set up a stable production infrastructure distributed across Europe

Its goal

- jointly build and operate a distributed terascale supercomputing facility
- deep integration -using GRID technologies- of high end national HPC infrastructures that are currently being deployed

Distributed European Infrastructure for Supercomputing Application

Joint Research Activities

Distributed
European
Infrastructure for
Supercomputing
Applications

JRA1 – Material Sciences. (RZG) Migration and deployment of leading applications in this scientific area.

JRA2 – Cosmology, (EPCC)

Migration and deployment on the inner infrastructure and its outer extension, of leading applications carried out by the European project VIRGO.

Joint Research Activities

The first six JRAs applications JRAs addressing modern and challenging application software engineering issues, paving the way in some cases for the heterogeneous extension of the facility. They also provide strong support to early adopters of the DEISA platform, in leading scientific areas vigorously supported by the national research organizations. The last JRA is the only Grid R&D activity supported by the project. JRA3 – Plasma Physics. (RZG) Migration and deployment of leading applications in this scientific area.

JRA4 – Life Sciences. (IDRIS) Migration and deployment of leading applications in Genomics and Health Sciences.

JRA5 – Industry. (CINECA) Migration and deployment of leading applications in Industrial Computational Fluid dynamics.

JRA7 – Access to Resources in Heterogeneous Environments. (EPCC) Development of a Heterogeneous Service Management software infrastructure based on OGSA standards. **JRA6 – Coupled Applications.** (IDRIS) Development, migration and deployment of leading multi-physics, multi-scale coupled applications in several areas of science and technology.

Service Activities in DEISA

• SA1 – Network Operation and Support. (FZJ leader)

 Deployment and operation of a gigabit per second network infrastructure for an European distributed supercomputing platform. Network operation and optimization during project activity.

• SA2 – Data Management with Global file systems. (RZG leader)

 Deployment and operation of global distributed file systems, as basic building blocks of the "inner" super-cluster, and as a way of implementing global data mlanagement in a heterogeneous Grid.

• SA3 – Resource Management. (CINECA leader)

 Deployment and operation of global scheduling services for the European supercluster, as well as for its heterogeneous Grid extension.

• SA4 – Applications and User Support. (IDRIS leader)

 Enabling the adoption by the scientific community of the distributed supercomputing infrastructure, as an efficient instrument for the production of leading computational science.

• SA5 – Security. (SARA leader)

 Providing administration, authorization and authentication for a heterogeneous cluster of HPC systems, with special emphasis on single sign-on.

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

Service Activities in DEISA

• SA1 – Network Operation and Support. (FZJ leader)

 Deployment and operation of a gigabit per second network infrastructure for an European distributed supercomputing platform. Network operation and optimization during project activity.

• SA2 – Data Management with Global file systems. (RZG leader)

 Deployment and operation of global distributed file systems, as basic building blocks of the "inner" super-cluster, and as a way of implementing global data mlanagement in a heterogeneous Grid.

• SA3 – Resource Management. (CINECA leader)

 Deployment and operation of global scheduling services for the European supercluster, as well as for its heterogeneous Grid extension.

• SA4 – Applications and User Support. (IDRIS leader)

 Enabling the adoption by the scientific community of the distributed supercomputing infrastructure, as an efficient instrument for the production of leading computational science.

• SA5 – Security. (SARA leader)

 Providing administration, authorization and authentication for a heterogeneous cluster of HPC systems, with special emphasis on single sign-on.

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

SA3: a three layer architecture

- Distributed European Infrastructure for Supercomputing Applications
- <u>Basic services</u>: are those located closest to the operating system of the computing platforms and enable the operation of a single or a multiple cluster through local or extended batch schedulers and other cluster-like features.
 - Intermediate services: are the first-level Grid services that allow access to an enlarged GRID empowered infrastructure, dealing with resource, network monitoring and information systems.
 - Advanced services: use the previous layers to implement the global management of the distributed resources of the infrastructure.

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

SA3: a three layer architecture

- Distributed European Infrastructure for Supercomputing Applications
- **Basic services**: are those located closest to the operating system of the computing platforms and enable the operation of a single or a multiple cluster through local or extended batch schedulers and other cluster-like features.
 - Intermediate services: are the first-level Grid services that allow access to an enlarged GRID empowered infrastructure, dealing with resource, network monitoring and information systems.
- Advanced services: use the previous layers to implement the global management of the distributed resources of the infrastructure.

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

- DEISA Introduction
- GRID: logical layout and UNICORE
- Account management
- UNICORE configuration
- Job submission
- UNICORE availability

The GRID logical layout

		Access					
	W	orkflow manager	nent				
Job rerouting	Data staging Brokering Co-allocation Multiple account						
Policies implementation through the scheduler (workload, advance reservation, accounting)							
		Resource manag	er				
	OS	S and communica	ation				
		Hardware					
ETSI Headquarters October 11-12, 200	, Sophia Antipolis, Fra 5	ance, 1 st L	INICORE Summit	11			

The GRID logical layout

	UNIC®RE							
Workflow management								
Job rerouting	Data staging	Brokering	Co-allocation	Multiple accounting				
Policies implementation through the scheduler (workload, advance reservation, accounting)								
Resource manager								
OS and communication								
Hardware								
ETSI Headquarters, Sophia Antipolis, France, 1 st UNICORE Summit October 11-12, 2005								

Middleware choice (1/3)

• Given the previous logical layout the DEISA partners have:

- 1. Gather the project requirements
- 2. Evaluated GTK and UNICORE
- 3. Chosen UNICORE because:
 - Respect of requirements and usefulness
 - Project partner experience with the product
 - Product maturity

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

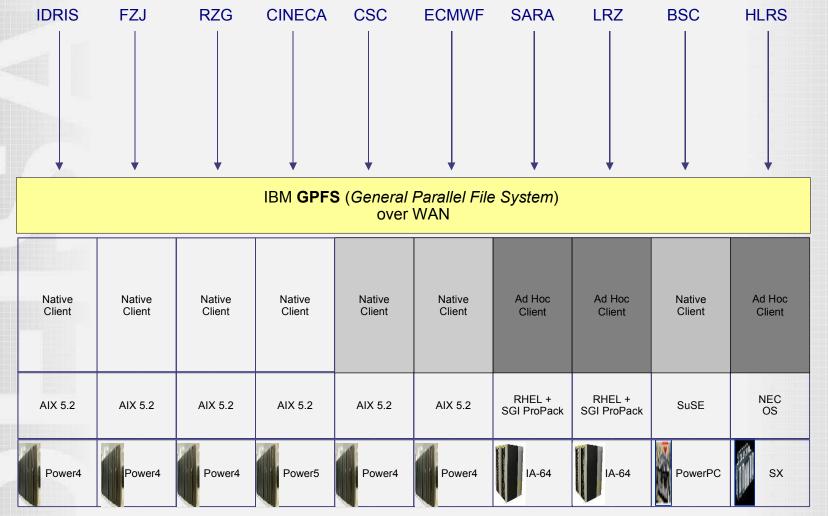
Middleware choice (2/3)

Distributed European Infrastructure for Supercomputing Applications

UNICORE as access layer:

- UNICORE adds a powerful complex workflow manager able to handle articulated operative chains spanning over <u>several</u> <u>heterogeneous machines</u>
- Authentication and authorization
 - Single Sign-on with x509 certificates and username mapping (UUDB)

Middleware choice (3/3)


Distributed European Infrastructure for Supercomputing Applications

Other UNICORE advantages

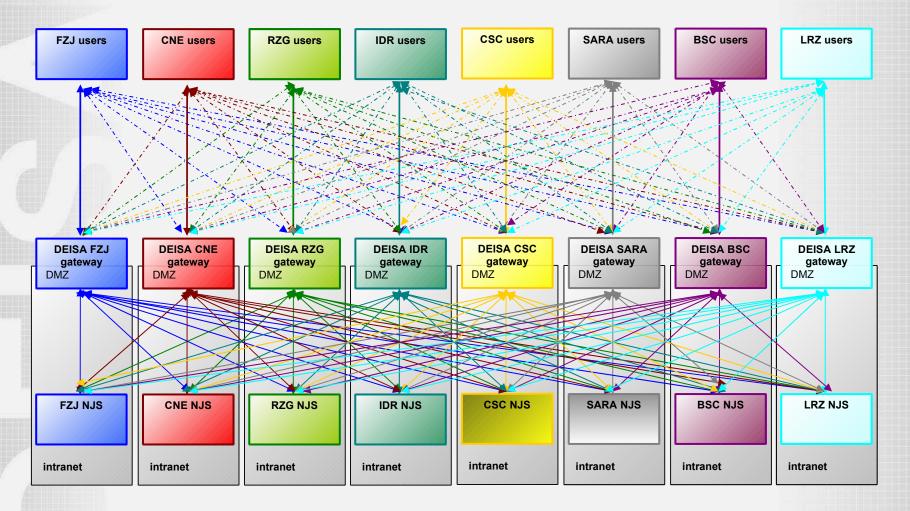
- Scalability
 - Easy to add new sites
 - Separate Gateways and NJSs help to balance the workload of the metascheduling operations
- Server logging and troubleshooting
 - Typically NJS log contains all the necessary informations to discover the problems
 - NJS log can be seen in the UNICORE client
- Setting up UNICORE server mainly requires property file editing

The GRID physical layout: data management

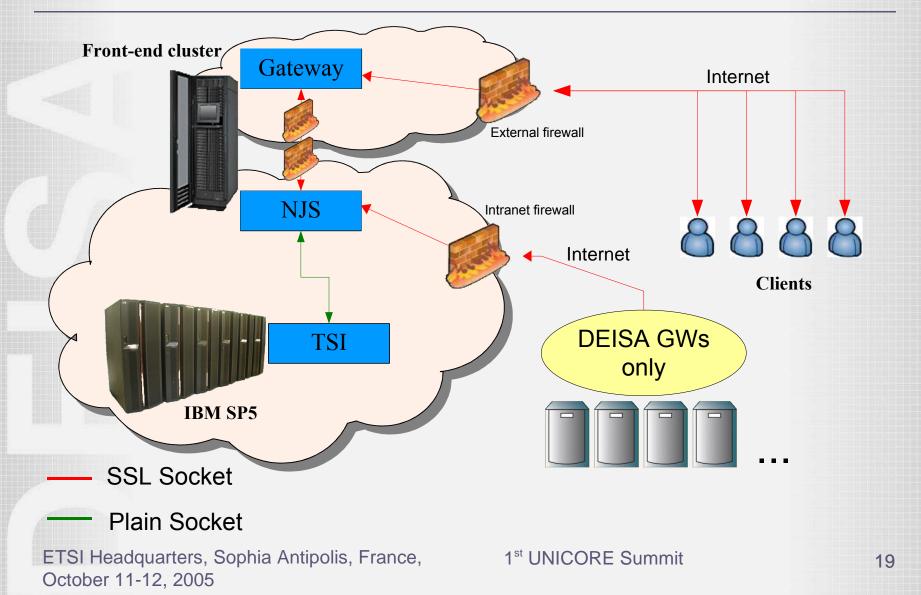
Distributed European Infrastructure for Supercomputing Applications

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

The GRID physical layout: resource management


Distributed European Infrastructure for Supercomputing Applications

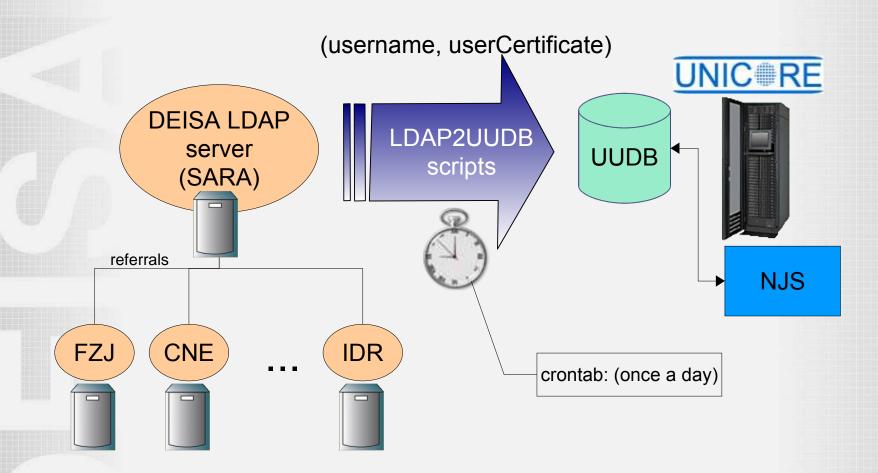
ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005


DEISA Unicore Infrastructure (architecture)

Distributed
European
Infrastructure for
Supercomputing
Applications

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

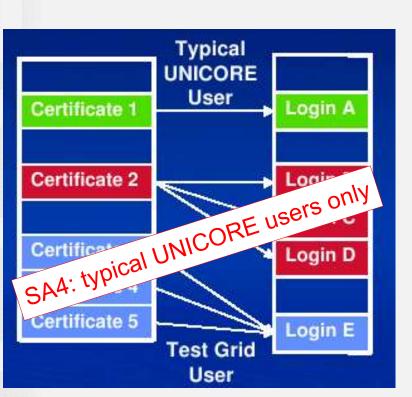
CINECA implementation



Distributed European Infrastructure for Supercomputing Applications

- DEISA Introduction
- GRID: logical layout and UNICORE
- Account management
- UNICORE configuration
- Job submission
- UNICORE availability

Account management: LDAP and UUDB


Distributed European Infrastructure for Supercomputing Applications

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

Multiple accounting

Distributed European Infrastructure for Supercomputing Applications

- User mapping with x509 certificate into more Xlogins
 - Useful for portals:
 - authentication and authorization is managed inside the portal
 - only a single entity (the portal) has to be authenticated in UNICORE
- More x509 certificates to a single Xlogin
 - Account sharing

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

- DEISA Introduction
- GRID: logical layout and UNICORE
- Account management
- UNICORE configuration
- Job submission
- UNICORE availability

DEISA Unicore configuration

- Public HTML page (Internet) to configure the server-side components:
 - Packages version,
 - Gateways and NJSs ports,
 - Certificates of the trusted NJSs,
 - Trusted CAs (CAcerts file),
 - Gateways XML file (to import into the UNICORE client),
 - PDF server configuration tutorial,
 - ... and contacts! (sa3-wg-unicore@deisa.org)

DEISA Unicore configuration

Centre	GW adress	NJS adress	CN of GW certificate	CN of NJS certificate	CA certificate	NJS certificate	Client-GW port	NJS-GW port
	zam177.zam.kfa-juelich.de 134.94.168.56	zam178.zam.kfa-juelich.de 134.94.168.57	DEISA Demo Gatewa y	DEISA Demo NJS	projects-ca-fz-juelich.pem	<u>fzi-nis.pem</u>	xxxx	xxxx
csc	uni.csc.fi 193.166.7.126	hiekka.csc.fi 193.166.7.127	uni.csc.fi	hiekka.csc.fi	NorduGrid Certification Authority.pem	<u>csc-nis pem</u>	xxxx	xxxx
sara	uni-gwl.sara.nl 145.100.29.233	uni-njs1.sara.nl 145.100.29.234	uni-gw1.sara.nl	uni-njs1.sara.nl	nikhef ca sara.pem	sara-nis.pem	xxxx	xxxx
RZG P	unigate.rzg.mpg.de 130.183.3.42	unicorn.rzg.mpg.de 130.183.8.180	unigate.rzg.mpg.de	unicorn.rzg.mpg.de	toplevel DFN-CA.pem gwdg-ca-ebene3-generic-ca.pem	nis-rzą. pem	xxxx	xxxx
CINECA Consorzio Interuniversitario	reunion.cineca.it 130.186.1.43	reunion.cineca.it 130.186.1.43	reunion cineca it	login011.sp4.cineca.it	INFN-CA.pem	nis.sp.sp4.cineca.it.pem	xxxx	XXXX
aris % mana	sirius.idris.fr 130.84.37.20	canopus.idris.fr 192.54.160.20		njszahir	<u>Grid-FR.pem</u> <u>CNRS.pem</u>	<u>idris-nis.pem</u>	xxxx	xxxx
BSC Barcelona Supercompating Center Lative Supercompart fails	opsuni01.bsc.es	opsuni02.bsc.es	opsuni01.bsc.es	unicore02.bsc.es	projects-ca-fz-juelich.pem	bsc-njs.pem	XXXX	xxxx
lrz.	unicore.lrz-muenchen.de 129.187.254.70	lxsrv0.lrz-muenchen.de 129.187.20.237		lxsrv0.lrz-muenchen.de	dfn-grid-pca.pem dfn-grid-server-ca.pem	<u>Irz-nis.pem</u>	xxxx	xxxx

Distributed European Infrastructure for Supercomputing Applications

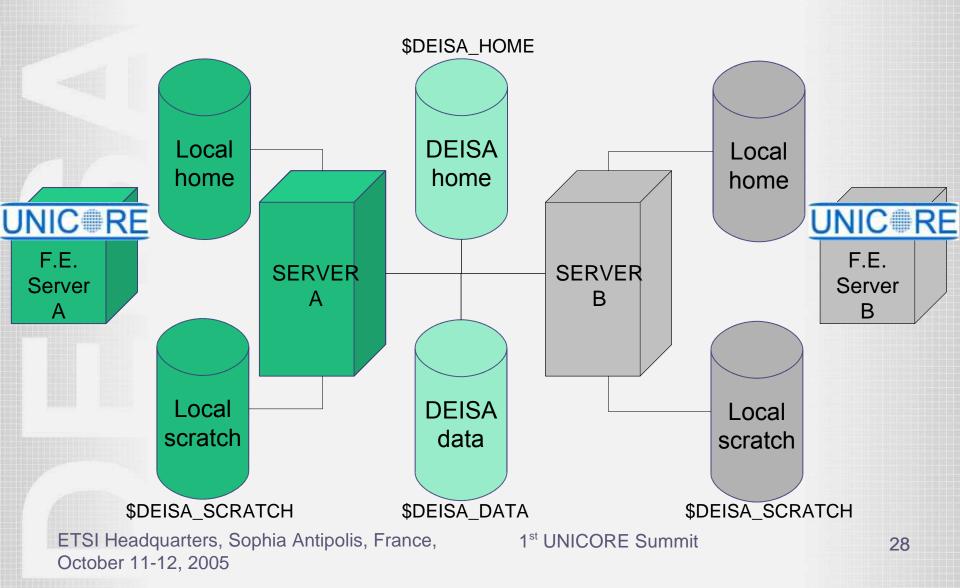
- DEISA Introduction
- GRID: logical layout and UNICORE
- Account management
- UNICORE configuration
- Job submission
- UNICORE availability

CPE: Common Production Environment

Definition:

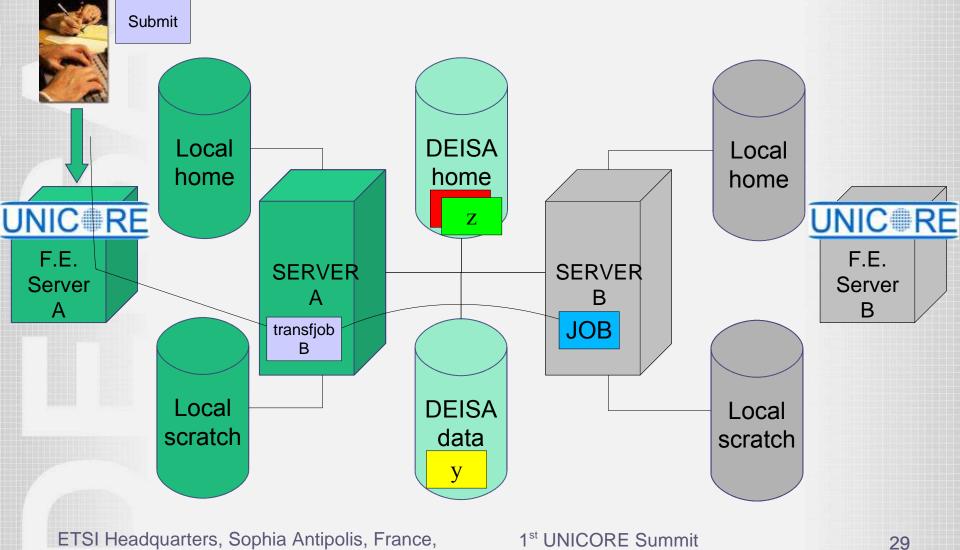
 To ensure a high level coherence of the software environment in the DEISA supercomputing infrastructure a Common Production Environment (CPE) has been defined and deployed on each computer integrated in the platform.

– <u>The CPE includes</u>:

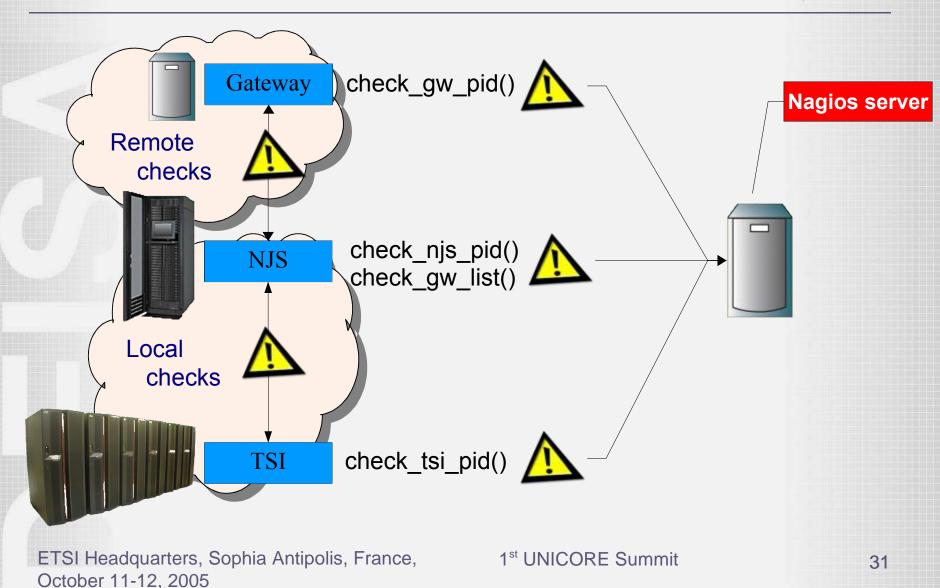

- shells (bash, tcsh)
- compilers (C, C++, Fortran and Java)
- libraries (communication, data formatting, numerical analysis, etc.)
- tools (debuggers, profilers, etc.)

Distributed European

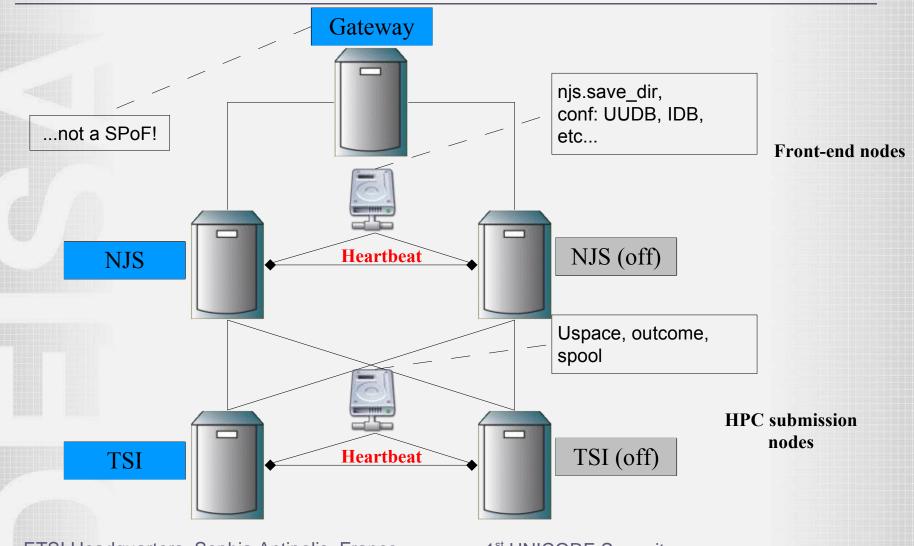
Infrastructure for


Supercomputing Applications

cp \$DEISA HOME/x \$DEISA SCRATCH cp \$DEISA_DATA/y \$DEISA_SCRATCH cp \$DEISA SCRATCH/z \$DEISA HOME


Distributed European Infrastructure for **Supercomputing Applications**

October 11-12, 2005


- DEISA Introduction
- GRID: logical layout and UNICORE
- Account management
- UNICORE configuration
- Job submission
- UNICORE availability

Healt-checking

Unicore and High Availability

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005

Thank you for attending!!!

ETSI Headquarters, Sophia Antipolis, France, October 11-12, 2005