

Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)

A Data Driven Science Gateway for Computational Workflows

Richard Grunzke (richard.grunzke@tu-dresden.de)

MoSGrid Science Gateway - Simple and efficient use of complex chemical applications via a portal integrated grid infrastructure

- More simple access to applications via a user friendly Portal
- More simple use of complex molecular simulation via Unified Integration
- Support work of chemists via linking of applications with Grid Workflow Management
- Support re-use of data and workflows via Data Repository

Academic Partners

Tübingen, Bioinformatics

- Oliver Kohlbacher
- Jens Krüger
- Sandra Gesing

Berlin, Zuse Institut

- Thomas Steinke
- Patrick Schäfer

Dortmund & Munich, Inorganic Chemistry

- Sonja Herres-Pawlis
- Ines Dos Santos Vieira

Köln, RRZ

- Lars Packschies
- Martin Kruse
- Klaus Warzecha

Dresden, ZIH

- Ralf Müller-Pfefferkorn
- Richard Grunzke

Paderborn, PC2

- André Brinkmann
- Georg
 Birkenheuer
- Johannes Schuster

Köln,

Organic Chemistry

• Dirk Blunk

3

• Sebastian Breuers

... and many associated partners.

Partners

Industrial Partners

GETLIG & TAR

Computational Chemistry and Fluid Thermodynamics

4

Partners

Zentrum für Informationsdienste und Hochleistungsrechnen

Background - Liferay

- Open source portal framework
- Widely used in grid and cloud projects
- Supports JSR168 and JSR286 standards
- Highly flexible
- Apache Tomcat as application server

Background – WS-PGRADE/gUSE

- gUSE (grid User Support Environment)
 - Services providing a collaborative application development environment for DCIs
- WS-PGRADE (Web services Parallel Grid Runtime and Developer Environment)
 - Highly flexible graphical user interface of gUSE

Richard Grunzke

6 und Hochleistungsrechnen

Background - UNICORE

- Standards-based grid middleware for secure access to federated compute and data resources
- Used in MoSGrid for
 - Job submission and management
 - Data management
 - Metadata management
- Metadata management based on Apache Lucene
- Metadata stored on same storage in JSON format
- Lucene used to index and search metadata

- Distributed object-based Grid und Cloud filesystem
 - Replication for availability, locality, bandwidth, and latency
- GSI and SAML support
- Easy integration in heterogenous environments
- FUSE client and Java API

- Liferay using Tomcat, WS-PGRADE with gUSE, and domain portlets as the GUI
- WS-PGRADE workflow editor:

MoSGrid Software Structure - Security

User certificate for creating a SAML assertion

ECHNISCHE

RESDEN

SAML assertion for authentication to gUSE, XtreemFS, and UNICORE

Domain Portlets – Molecular Dynamics

Applications: Gromacs, Amber, NWChem

 MosGrid Portal
 Simulations
 Molecular Dynamics

 Workflow Submission
 Workflow Monitoring
 About
 Admin

 This is the MD Portlet,
 Currently there are two options:
 1. You can submit a locally prepared tpr-file (grompp-output). It is required to uplo

 You can equilibrate a protein of your choice in just a couple of clicks. The simulity there are two the system(s).
 Please select a Workflow

 FO Gromars
 This is the simulation of the system (s).
 This is the simulation of the system (s).

Please upload your protein PDB-file. Multichain models and oligomers are currently

Domains Richard Grunzke

Domain Portlets – Quantum Chemistry

Applications: Gaussian, Turbomole, NWChem

elect an imported instance		
Import		
G09BASICDFT_29.05.2012_15:25		
ease fill the input mask to submit your workflow		
Gaussian 09 Optimisation		
Functional*		
BLTP		
Basis Set*		
E-mail shares		
0		
Snin*		
1		
Walltime (min) [1, 10080]*		
100		
Cores [1, 8]*		
8		
Memory (MB) [100, 2000]*		
2000		
molecule structure		
C -4.84400 0.85862 0.09359		
C -3.63296 1.73879 0.02999		Jmol
H -2.71537 1.26022 -0.34931 O -3.63668 2.91717 0.37011	T	
H -4.63455 0.01041 0.74987		
Submit Kemove		
TECHNISCHE		

Applications:	CADDSuite,	FlexX
	,	

Docking Portlet			
Import Submission Monitoring About ?			
Select an imported instance Import StandardDockingWorkflow_2012-03-30-125439_	29.(-		
Please fill the input mask to submit your workflow	,		
Filename * Upload PDB PDB Model *	Select a protein chain from your PDB input file to act as receptor (secondary structure) including the binding		
Model 0	pocket (orange).		
A Name of ligand as stated in pdb file * GNT Protein Chains that are to be deleted	Specify a reference ligand (green) by it's three letter code including the corresponding chain. It might be necessary to open the input PDB file with an editor. This information is required for the indentification of the binding site and the calculation of RMSD values.		
	Domains	ZIH	
CALC DRESDEN	Richard Grunzke	Zentrum für Informationsdienste und Hochleistungsrechnen	

Repository - Metadata with MSML

- Repository consists of data and metadata storage
- Development of MSML (Molecular Simulation Mark-up Language)
- Subset and extension of CML (Chemical Mark-up Language)
- Unified data representation for all 3 domains
- Used for storing structures, simulation descriptions, and results
- Parsers and adapters used for conversions to and from MSML

Repository - Parser and Adapter

- Structure parser for input structure formats (PDB, SDF) to MSML
- Parser for application output to MSML
- Adapter for MSML to application input

DRESDEN

- Upload of new data
 - Structure parser to convert raw structures to MSML
 - Metadata extractor to convert MSML to JSON
 - UNICORE and Lucene used for indexing JSON files

Use of data

- Chooses domain portlet and suitable workflow
- Adjusts parameters for applications and selects input
- First step in workflows: MSML to application specific input
- Results are computed
- Output to MSML
- Last step in workflows: MSML to JSON metadata
- JSON indexed for searchable results

Repository - UNICORE integration

- Integration of XtreemFS in UNICORE with URL scheme (Thanks Bernd)
 - UNICORE extension to make xtreemfs:// available
 - XtreemFS access via TSI local mount point or remote SMS
- Integration of UNICORE in gUSE with submitter
 - Connection between gUSE and UNICORE to submit jobs
 - To index JSON metadata at the end of workflows
- Integration of UNICORE metadata capabilities in portal
 - Metadata extractor to convert MSML to JSON
 - Searching in search portlet and in domain portlets

Outlook

- Updating infrastructure for sustainability
- Finishing data and metadata integration
- Improvements of domain portlets with portlet API
- Automatic login via certificates
- Release MoSGrid as open-source

Follow-up Projects

- ER-flow EU project to build european workflow sharing community
 - Integration of applications in SHIWA simulation platform
 - Study of data exchange between workflow systems
- SCI-BUS EU project for semantic search and visualization
 - Search over workflows, results and structures
 - Workflow editor and visualization with WebGL

Questions?

Richard Grunzke