A Data Driven Science Gateway for Computational Workflows
Introduction

- MoSGrid Science Gateway - Simple and efficient use of complex chemical applications via a portal integrated grid infrastructure

- More simple access to applications via a user friendly **Portal**
- More simple use of complex molecular simulation via **Unified Integration**
- Support work of chemists via linking of applications with **Grid Workflow Management**
- Support re-use of data and workflows via **Data Repository**
Academic Partners

Tübingen, Bioinformatics
- Oliver Kohlbacher
- Jens Krüger
- Sandra Gesing

Berlin, Zuse Institut
- Thomas Steinke
- Patrick Schäfer

Dortmund & Munich, Inorganic Chemistry
- Sonja Herres-Pawlis
- Ines Dos Santos Vieira

Köln, RRZ
- Lars Packschies
- Martin Kruse
- Klaus Warzecha

Dresden, ZIH
- Ralf Müller-Pfefferkorn
- Richard Grunzke

Paderborn, PC2
- André Brinkmann
- Georg Birkenheuer
- Johannes Schuster

Köln, Organic Chemistry
- Dirk Blunk
- Sebastian Breuers

... and many associated partners.
Industrial Partners

- GETLIG & TAR
- COSMOlogic GmbH & Co. KG
 Computational Chemistry and Fluid Thermodynamics
- ORACLE
- BioSolveIT
- Bayer Technology Services

Partners
Background - Liferay

- Open source portal framework
- Widely used in grid and cloud projects
- Supports JSR168 and JSR286 standards
- Highly flexible
- Apache Tomcat as application server
Background – WS-PGRADE/gUSE

- **gUSE** (grid User Support Environment)
 - Services providing a collaborative application development environment for DCIs
- **WS-PGRADE** (Web services Parallel Grid Runtime and Developer Environment)
 - Highly flexible graphical user interface of gUSE
Background - UNICORE

- Standards-based grid middleware for secure access to federated compute and data resources
- Used in MoSGrid for
 - Job submission and management
 - Data management
 - Metadata management
- Metadata management based on Apache Lucene
- Metadata stored on same storage in JSON format
- Lucene used to index and search metadata
Background - XtreemFS

- Distributed object-based Grid und Cloud filesystem
- Replication for availability, locality, bandwidth, and latency
- GSI and SAML support
- Easy integration in heterogenous environments
- FUSE client and Java API
MoSGrid Software Structure - GUI

- Liferay using Tomcat, WS-PGRADE with gUSE, and domain portlets as the GUI
- WS-PGRADE workflow editor:
MoSGrid Software Structure - Security

- User certificate for creating a SAML assertion
- SAML assertion for authentication to gUSE, XtreemFS, and UNICORE
Domain Portlets – Molecular Dynamics

Applications: Gromacs, Amber, NWChem
Domain Portlets – Quantum Chemistry

Applications: Gaussian, Turbomole, NWChem
Domain Portlets – Docking

Applications: CADDSuite, FlexX

Docking Portlet

Select an imported instance

Import
StandardDockingWorkflow_2012-03-30-125439_29.

Please fill the input mask to submit your workflow

PDBCutter

Filename:
1DX6.pdb

Upload PDB

PDB Model:
Model 0

- [] Chain A
- [] Chain B

Chain name of ligand:
A

Name of ligand as stated in pdb file:
GNT

Protein Chains that are to be deleted

Select a protein chain from your PDB input file to act as receptor (secondary structure) including the binding pocket (orange).

Specify a reference ligand (green) by its three letter code including the corresponding chain. It might be necessary to open the input PDB file with an editor. This information is required for the identification of the binding site and the calculation of RMSD values.
Repository - Metadata with MSML

- Repository consists of data and metadata storage
- Development of MSML (Molecular Simulation Mark-up Language)
- Subset and extension of CML (Chemical Mark-up Language)
- Unified data representation for all 3 domains
- Used for storing structures, simulation descriptions, and results
- Parsers and adapters used for conversions to and from MSML
Repository - Parser and Adapter

- Structure parser for input structure formats (PDB, SDF) to MSML
- Parser for application output to MSML
- Adapter for MSML to application input
Repository - Data Management

Upload of new data
- Structure parser to convert raw structures to MSML
- Metadata extractor to convert MSML to JSON
- UNICORE and Lucene used for indexing JSON files
Use of data

- Chooses domain portlet and suitable workflow
- Adjusts parameters for applications and selects input
- First step in workflows: MSML to application specific input
- Results are computed
- Output to MSML
- Last step in workflows: MSML to JSON metadata
- JSON indexed for searchable results
Repository - UNICORE integration

- Integration of XtreemFS in UNICORE with URL scheme (Thanks Bernd)
 - UNICORE extension to make xtreemfs:// available
 - XtreemFS access via TSI local mount point or remote SMS

- Integration of UNICORE in gUSE with submitter
 - Connection between gUSE and UNICORE to submit jobs
 - To index JSON metadata at the end of workflows

- Integration of UNICORE metadata capabilities in portal
 - Metadata extractor to convert MSML to JSON
 - Searching in search portlet and in domain portlets
Outlook

- Updating infrastructure for sustainability
- Finishing data and metadata integration
- Improvements of domain portlets with portlet API
- Automatic login via certificates
- Release MoSGrid as open-source
Follow-up Projects

- ER-flow – EU project to build European workflow sharing community
 - Integration of applications in SHIWA simulation platform
 - Study of data exchange between workflow systems

- SCI-BUS – EU project for semantic search and visualization
 - Search over workflows, results and structures
 - Workflow editor and visualization with WebGL
Questions?