
Fostering the adoptionFostering the adoption
of UNICORE Portalof UNICORE Portal

Krzysztof Benedyczak, Piotr Bała, Marcelina Borcz, 
Valentina Huber, Rafał Kluszczyński, Mariya Petrova, 
Bernd Schuller, Piotr Piernik 

ICM, Warsaw University
FZJ



UNICORE SummitLeipzig, 24.06.2014

OutlineOutline

Portal use cases
Past experience: GridBeans
Assumptions
Current state of the portal
Proposed roadmap



UNICORE SummitLeipzig, 24.06.2014

Approach to the portalApproach to the portal

UNICORE Portal can be considered as an easier to use 
URC replacement

No need to install or update
Can be preconfigured by its administrator for a concrete 
Grid infrastructure

In this talk we look at the Portal also from a domain 
perspective

Easy button (tm) approach
Dedicated to a well defined group of users with a concrete, 
not generic requirements.
Sometimes sophisticated features needed.

We need to support both worlds.



UNICORE SummitLeipzig, 24.06.2014

Use cases: SinusMedUse cases: SinusMed

Image analysis of series 
of CT images of 
patient's head.
Application recognizes 
and marks air-filled 
areas (sinuses) in the 
whole series allowing 
for obtaining 3D image.
Useful for further 
processing: measuring 
air volume, air flow etc.



UNICORE SummitLeipzig, 24.06.2014

Use cases: SinusMedUse cases: SinusMed

A single, atomic application. 
Rather big input and output (couple of hundreds of Mbs)

Requires:
Output visualization, including the output of early stages of 
processing, to recognize malformed input parameters.
Intuitive management of previous simulations, input and 
output sets.
Very simple management of resource requirements.

Actually should be fully automated: the fastest track to results.

Future: part of multistep processing (not a workflow!)
Very good example of a simple application that should 
be done right.



UNICORE SummitLeipzig, 24.06.2014

Use cases: fighting cancer with genomic Use cases: fighting cancer with genomic 
researchresearch

Determination of differences between tumor and non-
tumor genome sequences of tissues obtained from 
patients diagnosed with colorectal cancer.
Internally: execution of a complex workflow, with 
structure dependent on particular simulation 
requirements.
Requirements:

API-based preparation of a workflow and its submission.
Simulations management: coherent view, rebuild of input of 
submitted simulations. Simulation = complete workflow.
Simple control of selected resource requirements.
Sneak peek of output being generated.



UNICORE SummitLeipzig, 24.06.2014

Use cases: VASPUse cases: VASP

The Vienna Ab initio Simulation Package (VASP)
Used for atomic scale materials modeling.
Computes an approximate solution to the many-body 
Schrödinger equation.

GridBean-like use case:
Input preparation (simple), 
Output visualization (Jmol-like).
Coherent presentation of all submitted simulations.
Automatic submission via broker.
Simple control of selected resource requirements.



UNICORE SummitLeipzig, 24.06.2014

Learning from the past: GridBeansLearning from the past: GridBeans

GridBenas model was introduced in Grid Programming Environment, 
at the beginning of SOA as a universal application integration layer.
Supports mostly atomic jobs.
Developer programs UI Developer programs UI 
and job description only.and job description only.
Fixed (prepare, run, 
see results) lifecycle.
Framework provides 
resource, variable and 
files control panels.

By Sandra Bergmann (?) from GB developer guide



UNICORE SummitLeipzig, 24.06.2014

What was wrong with GBs?What was wrong with GBs?

Exchangeable UIs (Swing or SWT or...) didn't work.
Too complicated (extra layer) for simple applications.
Generic in theory while UNICORE specific in practice.
What counts:

CLOSED FRAMEWORKCLOSED FRAMEWORK
How to make a workflow job?
How to organize simulations in a customized way?
How to provide a simpler implementation of 
resource/file/variables control?
Change the overall app UI? 
Interact with a job at its runtime?



UNICORE SummitLeipzig, 24.06.2014

Design assumptionsDesign assumptions

KISS & YAGNI
We are a small developer group, we can't afford 
overengineered code.

Flexibility
We shouldn't produce a closed API as we can't foresee all 
the use cases.
Instead an open API is needed:

You can do whatever you want, but certain You can do whatever you want, but certain 
things are easier with our APIthings are easier with our API



UNICORE SummitLeipzig, 24.06.2014

Current status of the portalCurrent status of the portal

Custom solution for shared objects – registry type. 
Controlled in XML, tightly coupled with UI assembly.

Grid model is imported from URC code
Hierarchical nodes structure, high use of inheritance and 
events.
Part of code not used (import).
Files access abstracted via Apache VFS, per user.
Grid status is polled.

Couple of UI components:
Grid (tree), Sites (table), Jobs (table), Data (file browser).
Generic job component (similar to Generic GridBean).

No portal API.



UNICORE SummitLeipzig, 24.06.2014

Portal code statsPortal code stats

Module NCSS % of total 
code

Applet integration 1316 3%

Authentication 2382 6%

UI 9091 23%

Workflow 10809 27%

Core 16347 41% In this 
nodes: 
13%

TOTAL 39945



UNICORE SummitLeipzig, 24.06.2014

Communication flowCommunication flow

Site 1 Site nSite 2

URC case



UNICORE SummitLeipzig, 24.06.2014

Communication flowCommunication flow

Site 1 Site nSite 2

Portal

Site 1 Site nSite 2

x3x3x3

URC case Portal case



UNICORE SummitLeipzig, 24.06.2014

Communication flowCommunication flow

Site 1 Site nSite 2

Portal

Site 1 Site nSite 2

x3x3x3

10 users x 5 sites x 20jobs = 1000 x getProperties / minute 
(or more)

URC case Portal case



UNICORE SummitLeipzig, 24.06.2014

Proposed portal roadmapProposed portal roadmap



UNICORE SummitLeipzig, 24.06.2014

FoundationFoundation

Use standard solutions as architecture foundation: IoC 
(e.g. Spring) instead of custom code

Less code to maintain, less verbose code, app singletons 
dependencies, dependency cycles control, more assembly 
features.

Decouple UI assembly from dependency and 
singletons.



UNICORE SummitLeipzig, 24.06.2014

The stateThe state

Refactor grid state model so that:
It implements what is needed (cleanup of URC specific 
code)
The Grid topology view can be build for the portal once, not 
per user.

Faster, always available, less resource usage.
The cache is reliable, fast.
Internal events system is simpler (current is terribly heavy 
weight)



UNICORE SummitLeipzig, 24.06.2014

Do not pollDo not poll

Site 1 Site nSite 2

Portal

x3x3x3

Current polling model



UNICORE SummitLeipzig, 24.06.2014

Do not pollDo not poll

Site 1 Site nSite 2

Portal

Proposed events model

Broker

Site 1 Site nSite 2

Portal

x3x3x3

Current polling model

Requires support at server side!



UNICORE SummitLeipzig, 24.06.2014

Reusable UI componentsReusable UI components

Single root package
Fully API configurable
Flexible

Jobs Table Viewer
Selectable columns, filterable contents (by application, by 
tag), no need for manual refresh.
Support for worflows – can be another component (Tree 
table?)

Resources selection components
Simple one with label like presentation
Control on resources being shown



UNICORE SummitLeipzig, 24.06.2014

Reusable UI components (2)Reusable UI components (2)

File monitoring component
Ability to provide custom handler.

File imports and exports component.
Variables component.
Upload to the Grid component.
Download from the Grid component.
Data Manager can be useful but is very complicated 
(too many storages).
The need for the Grid Browser and Sites Browser is 
minimal. 

Grid admins only?



UNICORE SummitLeipzig, 24.06.2014

High level APIHigh level API

Possibility to easily perform common tasks:
Discover Grid state, jobs
Get notifications about updates
NOT Grid browser oriented. E.g. getAllJobs, instead of get all 
job-type children of an enumeration node...

Gridlet API can be used as a base.



UNICORE SummitLeipzig, 24.06.2014

The last mileThe last mile

For typical applications a GridBean-like framework can 
be provided.
10x simpler:

Generic UI, where app integrator can select with few lines 
of code which modules are needed (submit button, 
resources panel and file imports)
Should provide common look and fill for apps in the portal 
and promote good UI practices.

The only goal should be: make simple app integration 
easier. No more, no less.


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24

