Resource Scheduling Algorithm in Distributed Problem-Oriented Environments

ANASTASIA SHAMAKINA, LEONID SOKOLINSKY

SOUTH URAL STATE UNIVERSITY THE 24-TH OF JUNE, 2014

Outline

1. Introduction

- Purpose of the work
- Clustering algorithms
- Requirements for a job model
- 2. POS algorithm
 - Mathematical job model
 - Problem-oriented scheduling (POS) algorithm
 - Example
- 3. Integration with UNICORE

Purpose

Development of a resource scheduling algorithm in problem-oriented distributed computing environments

Clustering algorithms

- 1. Kim and Browne's linear clustering algorithm (KB/L)
- 2. Sarkar's algorithm
- Dominant sequence clustering algorithm (DSC)

Requirements for a job model

- Representing a workflow in the form of a marked-up weighted directed acyclic graph (DAG)
- Clustering vertices
- Scaling individual tasks in a workflow
- Specifying the number of processor cores for computational nodes
- Describing known and new algorithms for clustering

Directed graph

A directed graph is called a quadruple

 $G = \langle V, E, init, fin \rangle,$

where

V is a vertices set;

E is an edges set;

init: $E \rightarrow V$ is a function which determines *an initial vertex* of an edge;

 $fin: E \rightarrow V$ is a function which determines a *final vertex* of an edge.

Weighting function and layout function of a graph

Let us take directed graph $G = \langle V, E, init, fin \rangle$.

- Weighting function δ(e) of edge e determines the amount of transmitted data from a task associated with vertex *init(e)* to a task associated with vertex *fin(e)*.
- *A layout* of graph G is function $\gamma: V \to \mathbb{N}^2$.

Job graph

A job graph is called a marked-up weighted directed acyclic graph,

$$G = \langle V, E, init, fin, \delta, \gamma \rangle,$$

where

V is a set of vertices which correspond to tasks,

E is a set of edges which correspond to data flows.

Example: a job graph

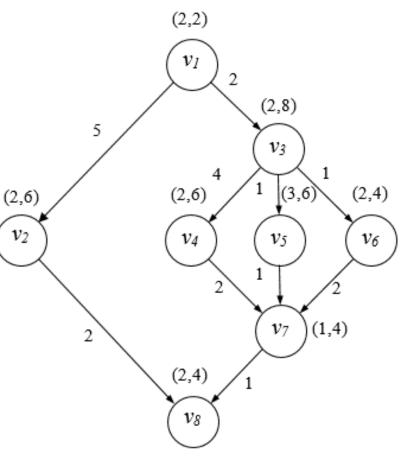
The layout function,

$$\gamma(v)=(m_v,t_v),$$

where

 m_v is the maximum number of processor cores on which task v has *a nearly-linear* speedup;

 t_v is the execution time of task v on a single core.



Computer system

- *Compute node P* is an ordered set of processor cores $\{c_0, \dots, c_{q-1}\}$.
- A computer system is an ordered set of compute nodes,

$$P_{1} = \begin{cases} c_{15} \\ c_{14} \\ c_{13} \\ c_{12} \\ c_{11} \\ c_{10} \\ c_{03} \\ c_{02} \\ c_{01} \\ c_{00} \\ c_{00} \\ c_{00} \\ c_{00} \\ c_{01} \\ c_{00} \\ c_{01} \\ c_{00} \\ c_{01} \\$$

$$\mathfrak{P} = \{P_0, \dots, P_{k-1}\}.$$

Clustering function

Clustering is called single-valued transformation of vertices set V of job graph G on a set of computational nodes P.

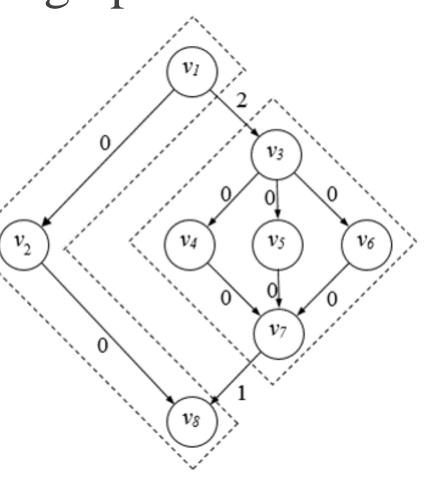
 $\omega \colon V \to \mathfrak{P}$

- *Cluster* W_i is a set of all vertices that are displayed on computational node $P_i \in \mathfrak{P}$.
- Example: $W_0 = \{v_1, v_2, v_8\}$ and $W_1 = \{v_3, v_4, v_5, v_6, v_7\}.$

Vertex v	$\boldsymbol{\omega}(\boldsymbol{v})$
v_1	P_0
v_2	P_0
v_3	P_1
v_4	P_1
v_5	P_1
v_6	P_1
v_7	P_1
v_8	P_0

Example: a clustered graph

- Clusters:
- $W_0 = \{v_1, v_2, v_8\}$ and $W_1 = \{v_3, v_4, v_5, v_6, v_7\}.$
- A communication cost is the time of data transmission along edge $e \in E$.
- A communication cost function, $\sigma(e) = \begin{cases} 0, if \ \omega(init(e)) = \omega(fin(e));\\ \delta(e), if \ \omega(init(e)) \neq \omega(fin(e)). \end{cases}$



Schedule

A schedule is called single-valued transformation,

 $\xi: V \to \mathbb{Z}_{\geq 0} \times \mathbb{N},$

which maps casual vertex $v \in V$ on a pair of numbers,

 $\xi(v) = (\tau_v, j_v),$

where τ_v determines the launch time of task v; j_v is a number of processor cores allocated to task v.

	$\boldsymbol{\xi}(\boldsymbol{v}) = (\boldsymbol{\tau}_{\boldsymbol{v}}, \boldsymbol{j}_{\boldsymbol{v}})$	
Vertex v	Launch time	Number of
	$ au_{v}$	cores $\boldsymbol{j}_{m{v}}$
v_1	0	2
v_2	1	2
v ₃	3	2
v_4	7	2
v_5	7	2
v_6	7	2
v_7	10	1
v_8	15	2

Communication cost

Communication cost $\chi(v, j_v)$ of task v on j_{v-th} processor cores is determined by the following formula:

$$\chi(v, j_{v}) = \begin{cases} t_{v}/j_{v}, & \text{if } 1 \leq j \leq m_{v}; \\ t_{v}/m_{v}, & \text{if } m_{v} < j_{v}. \end{cases}$$

Vertex <i>v</i>	$\chi(v, j_v)$
v_1	1
v_2	3
v_3	4
v_4	3
v_5	3
v_6	2
v_7	4
v_8	2

Scheduled graph

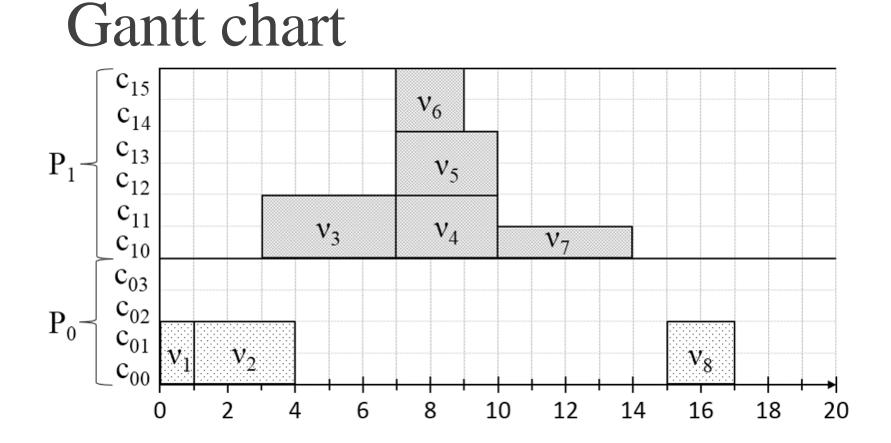
• Clustered graph G with specified schedule ξ is called *a scheduled graph*.

Critical path

• Let us take a simple path, $y = (e_1, e_2, ..., e_n)$, in scheduled graph *G*. Path cost u(y) has the following value:

$$u(y) = \chi\left(fin(e_n), j_{fin(e_n)}\right) + \sum_{i=1}^n \left(\chi\left(init(e_i), j_{init(e_i)}\right) + \max\left(\sigma(e_i), \tau_{fin(e_i)} - s_{init(e_i)}\right)\right)$$

• Y is a set of all simple paths in scheduled graph G. A simple path, $\overline{y} \in Y$, is called a critical path, if it has a maximum value.



The critical path equals 17.

Problem-oriented scheduling (POS) algorithm

1. Constructing an initial configuration of a graph,

 $G_0 = \langle V, E, init, fin, \delta, \gamma, \omega_0, \xi_0 \rangle.$

2. $i \coloneqq 0$.

3. Changing over from configuration

 $G_{i} = \langle V, E, init, fin, \delta, \gamma, \omega_{i}, \xi_{i} \rangle \text{ to configuration}$ $G_{i+1} = \langle V, E, init, fin, \delta, \gamma, \omega_{i+1}, \xi_{i+1} \rangle,$ such as

(simultaneously marking up the considered edges).

4. If there remain some unconsidered edges, then

4.1. $i \coloneqq i + 1;$

4.2. transfer to step 3.

Example: a POS algorithm

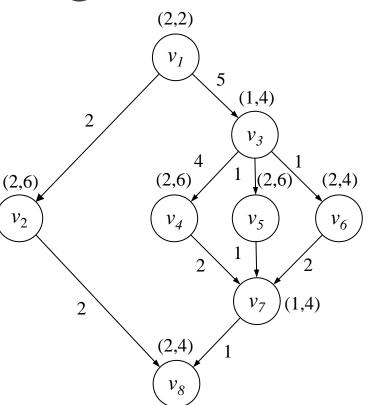
A job graph, $G = \langle V, E, init, fin, \delta, \gamma \rangle$

A computer system, $\mathfrak{P} = \{P_0, P_1, \dots, P_7\},\$

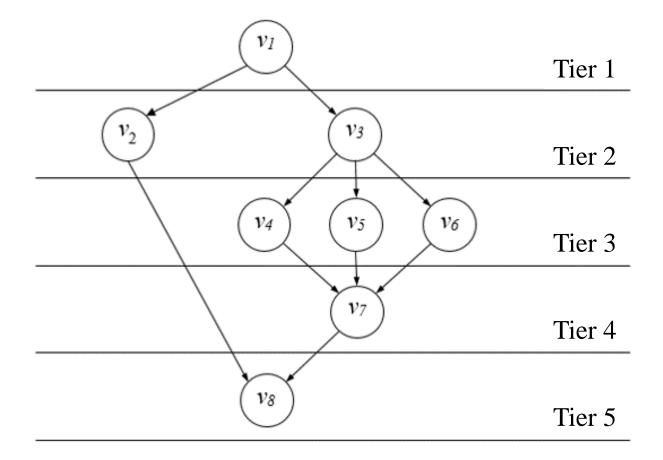
where $P_0 = \{c_{00}, c_{01}, c_{02}, c_{03}\},\$

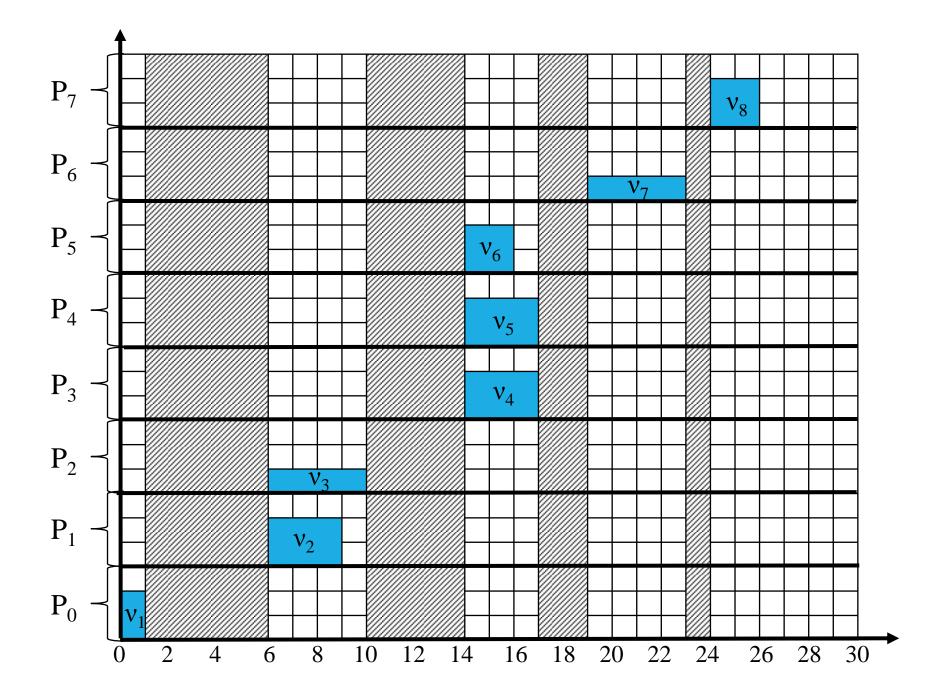
. . .

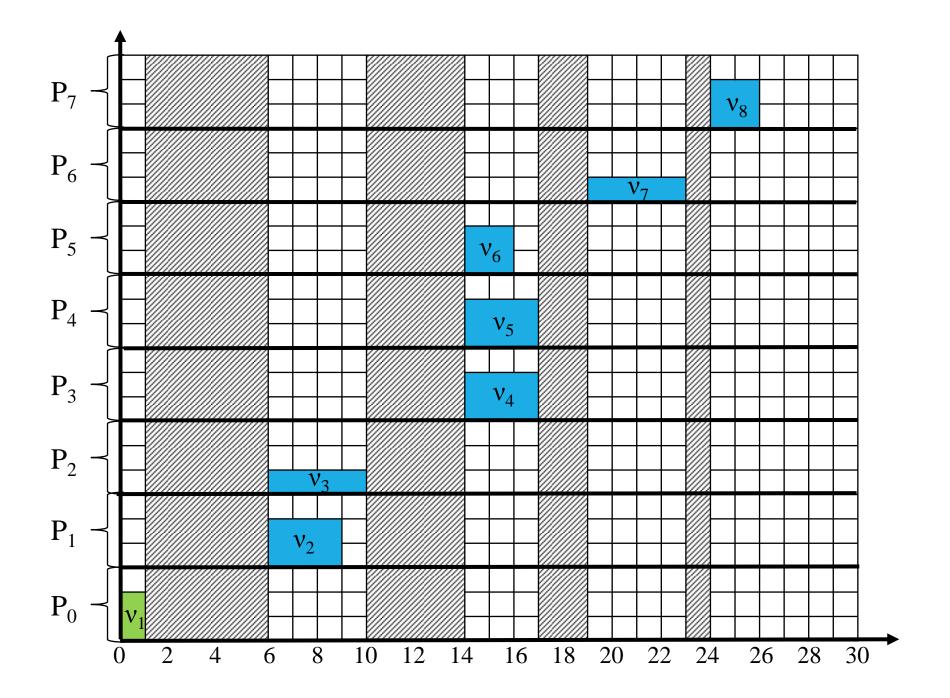
 $P_1 = \{c_{10}, c_{11}, c_{12}, c_{13}\},\$

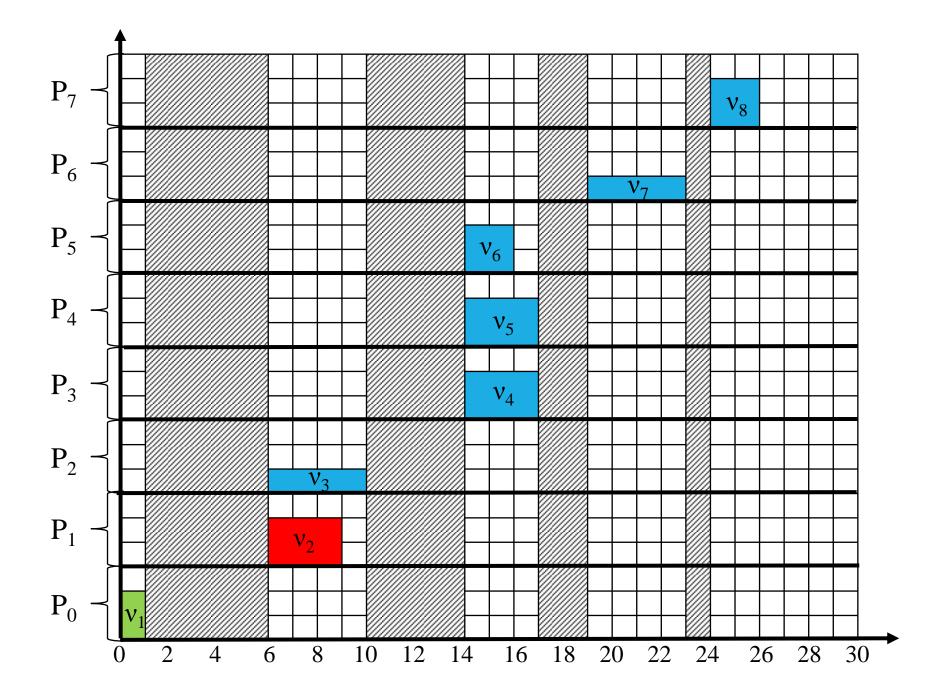


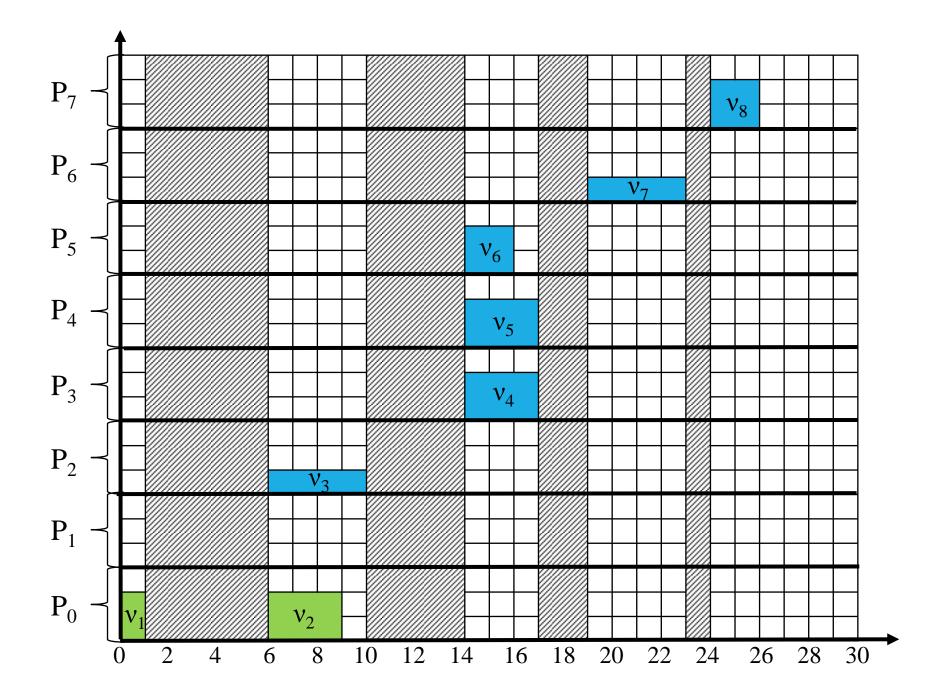
Canonical tiered-and-parallel form of a graph

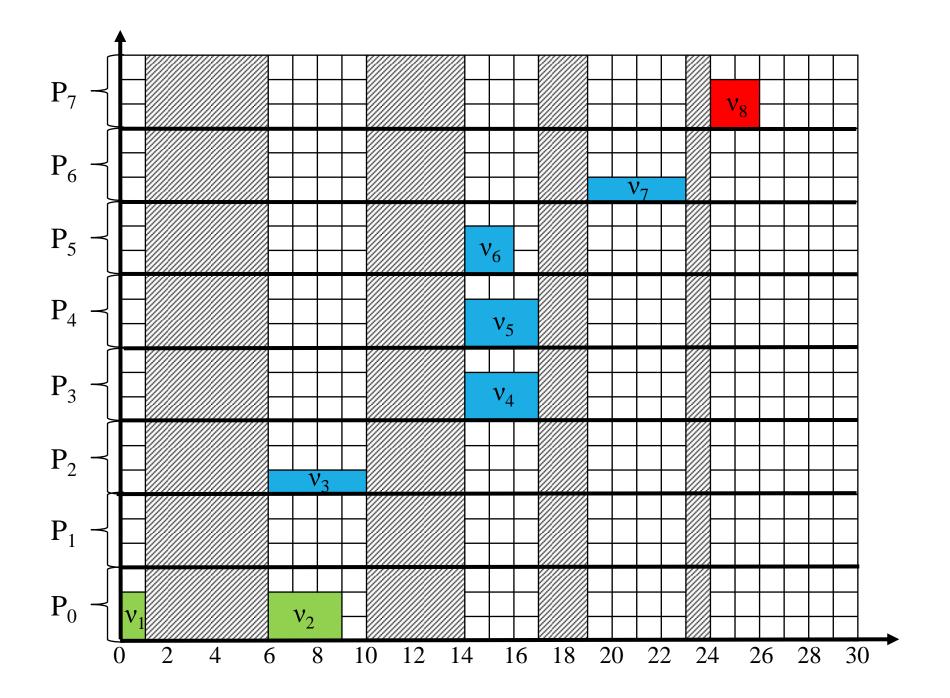


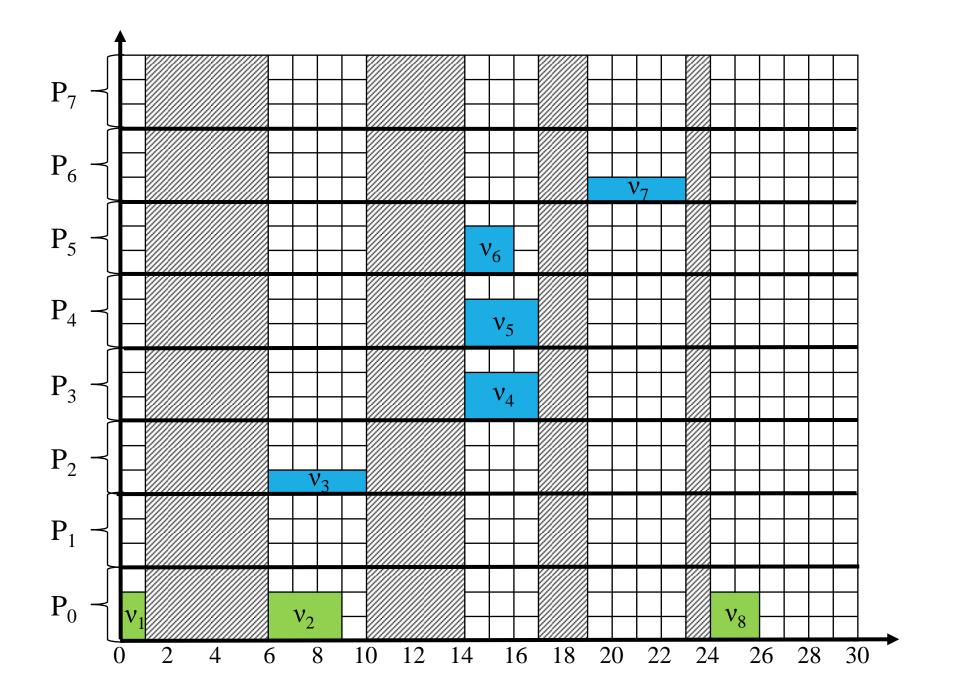


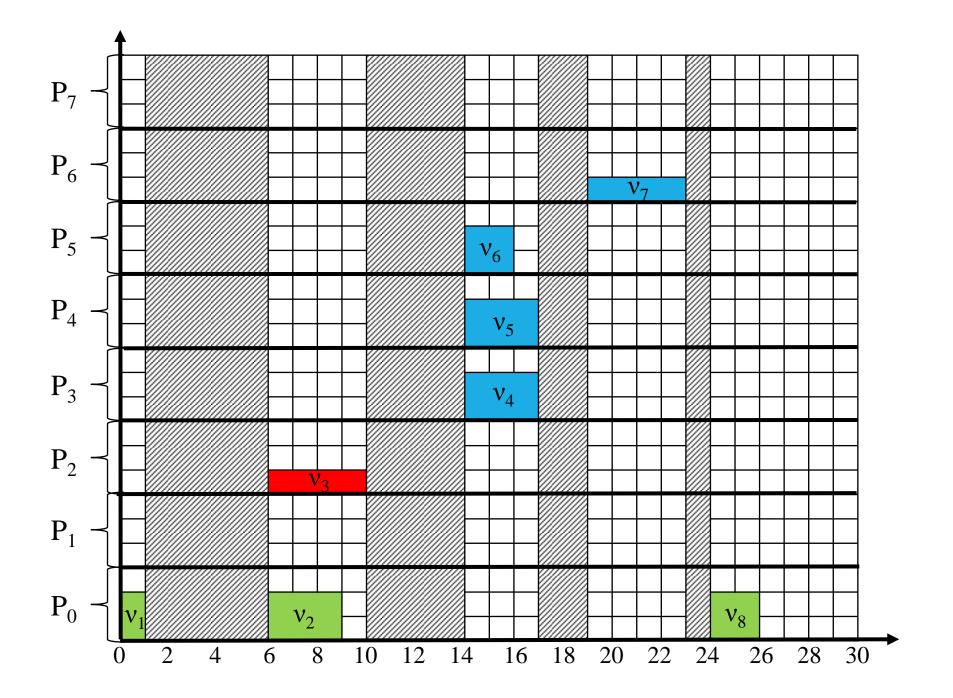


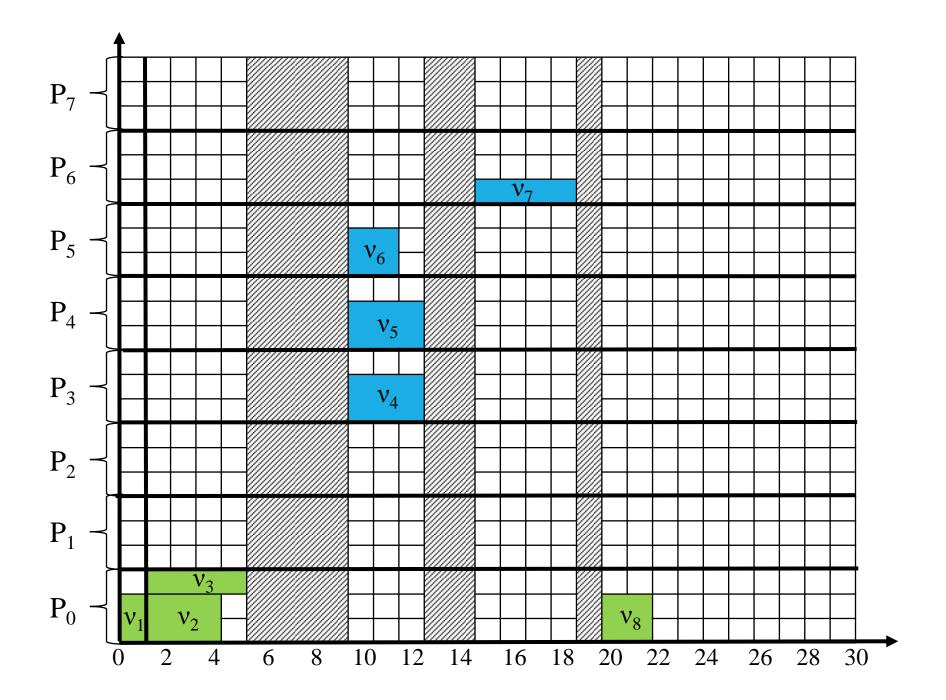


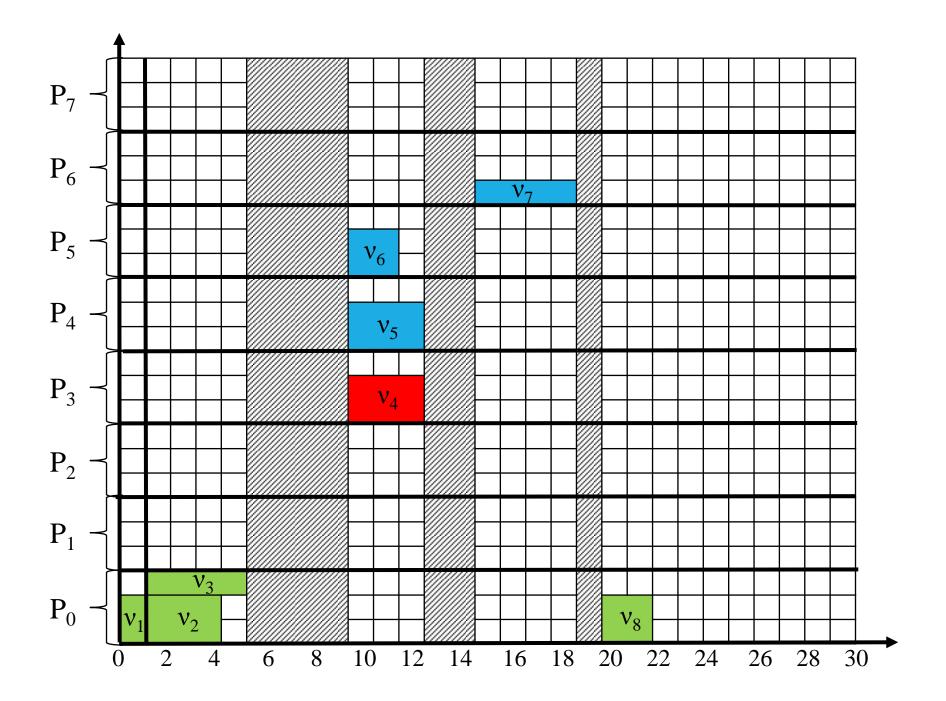


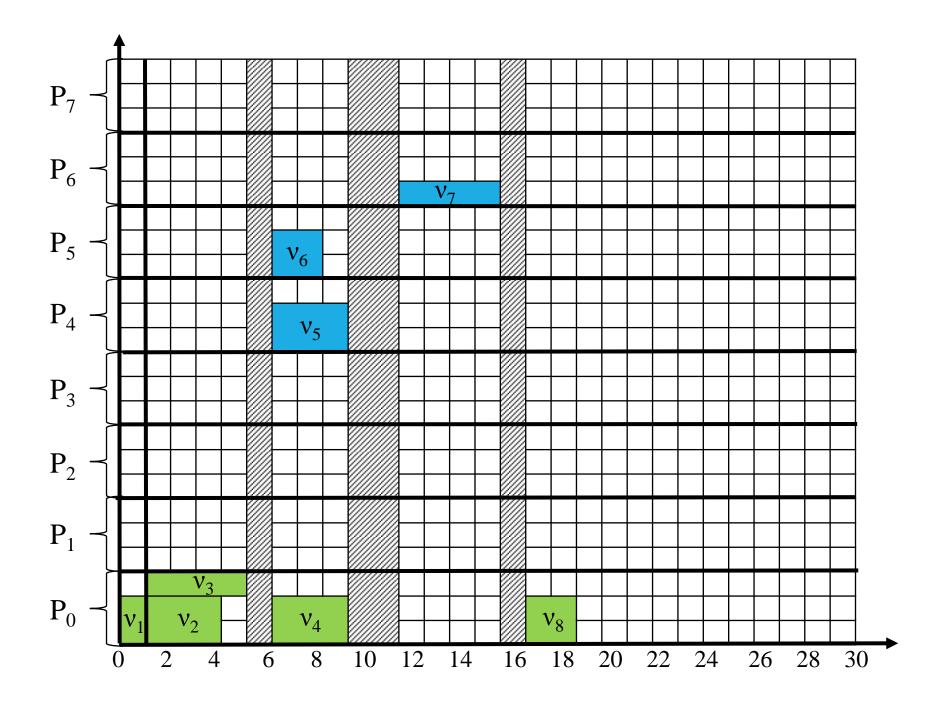


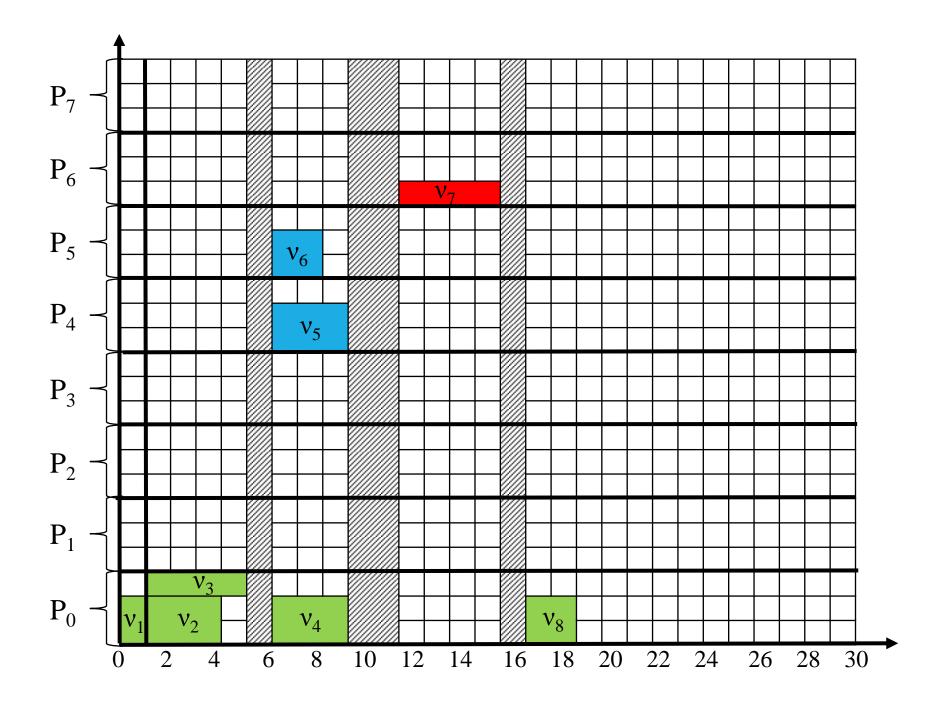


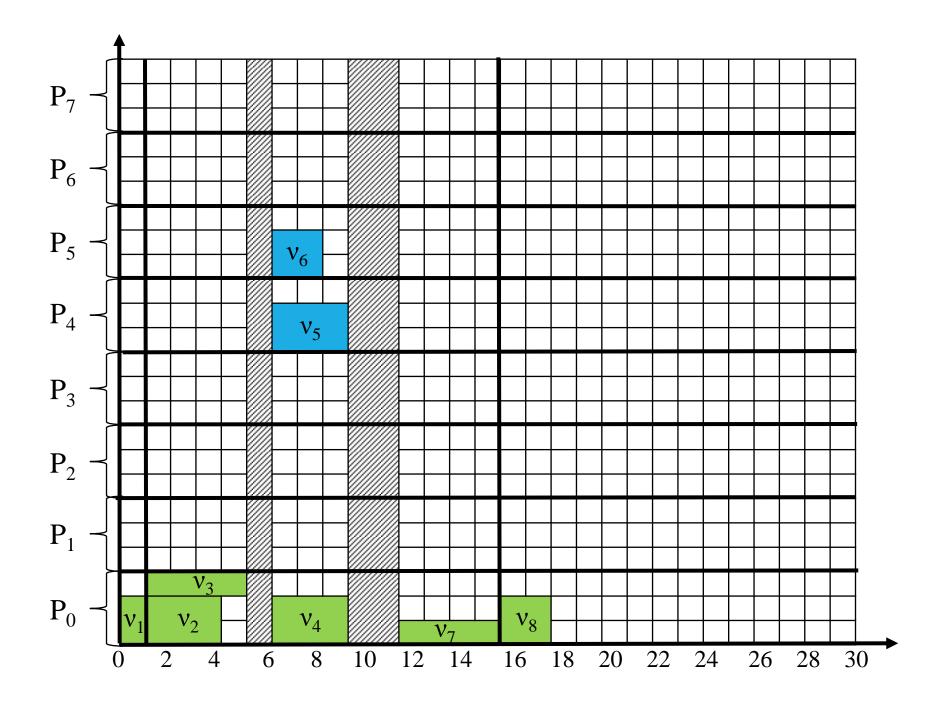


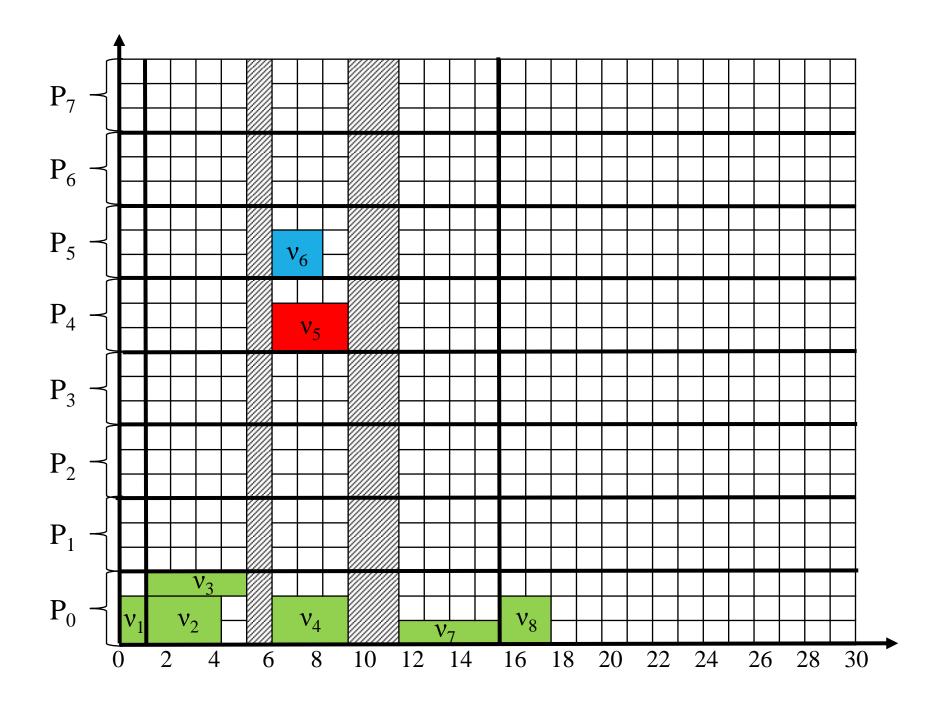




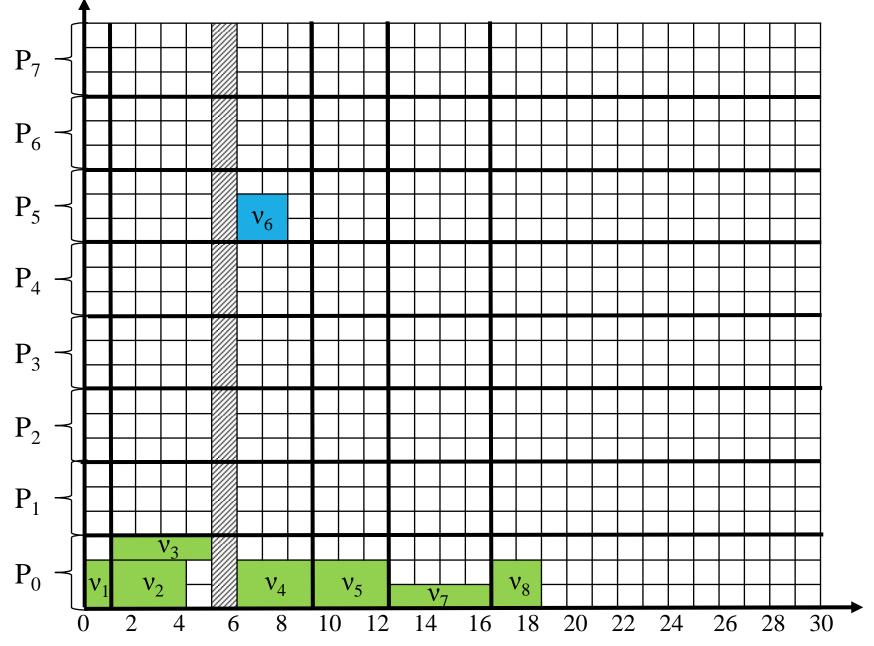


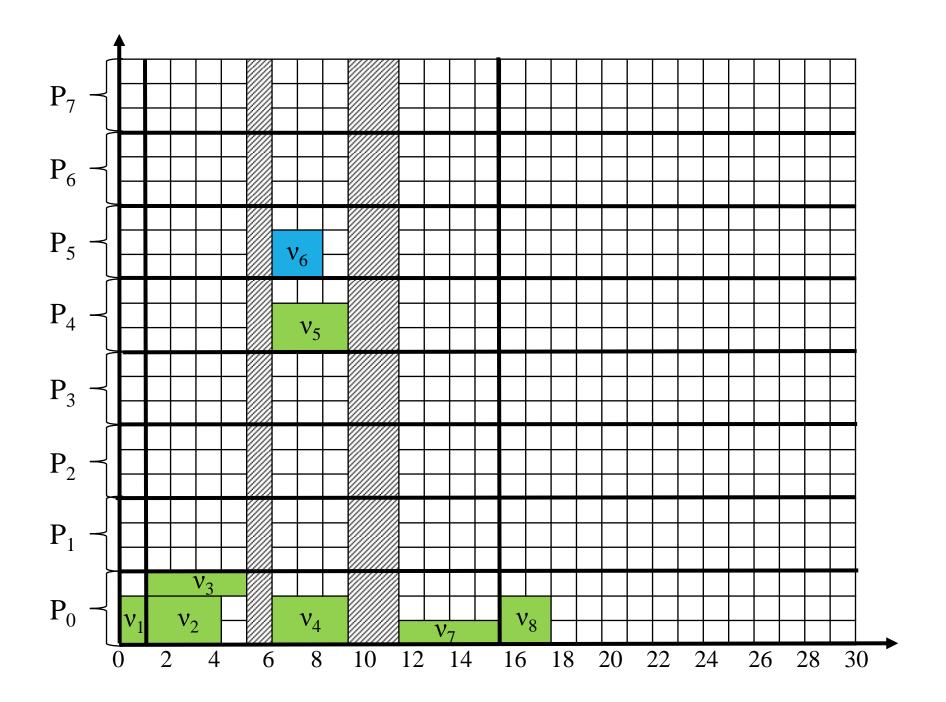


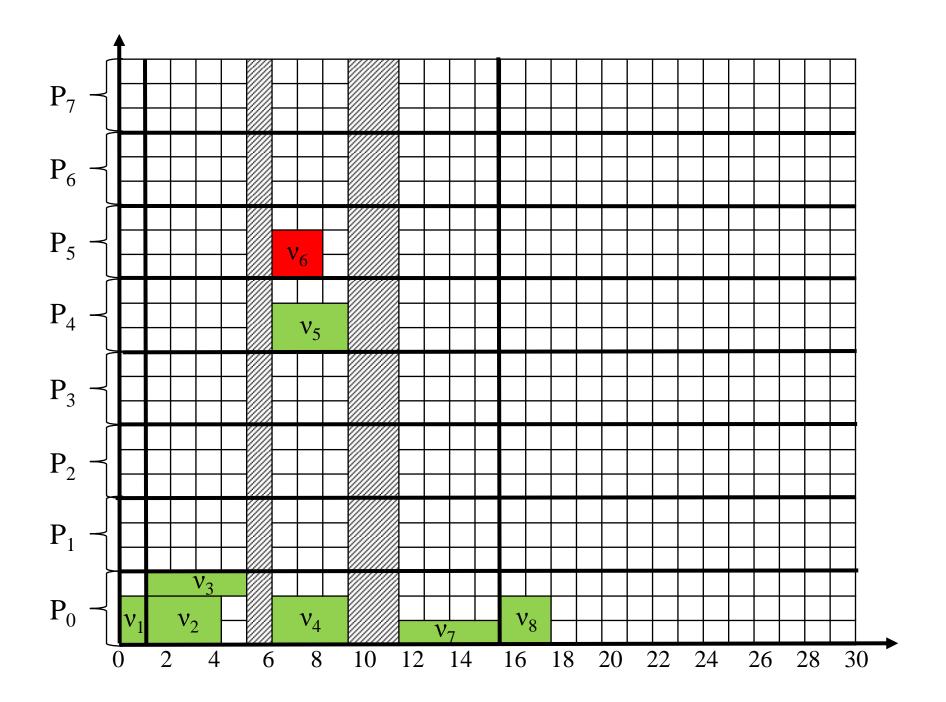


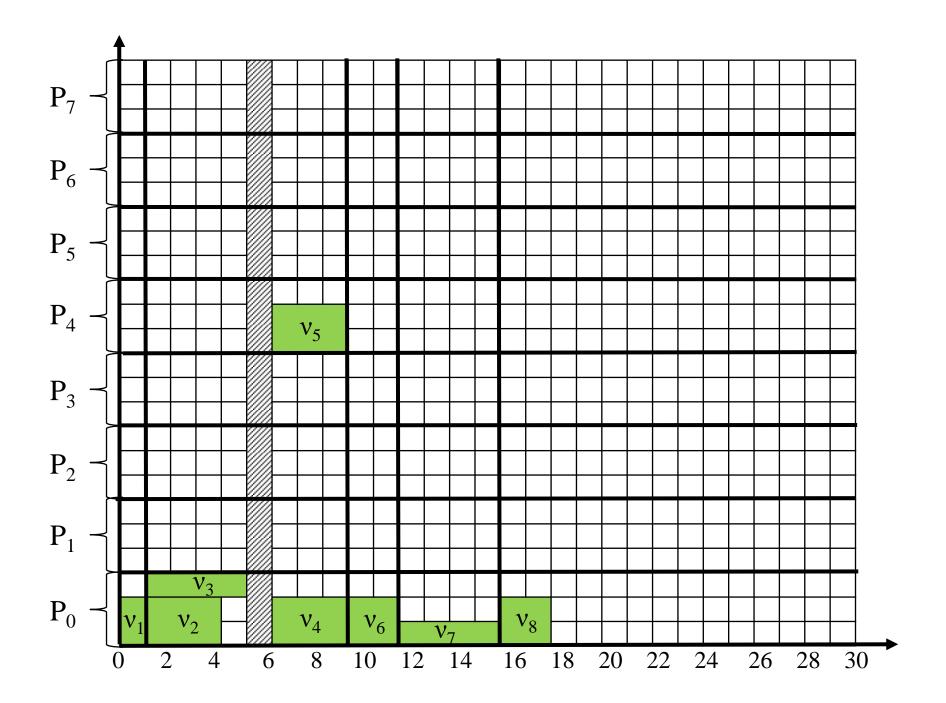


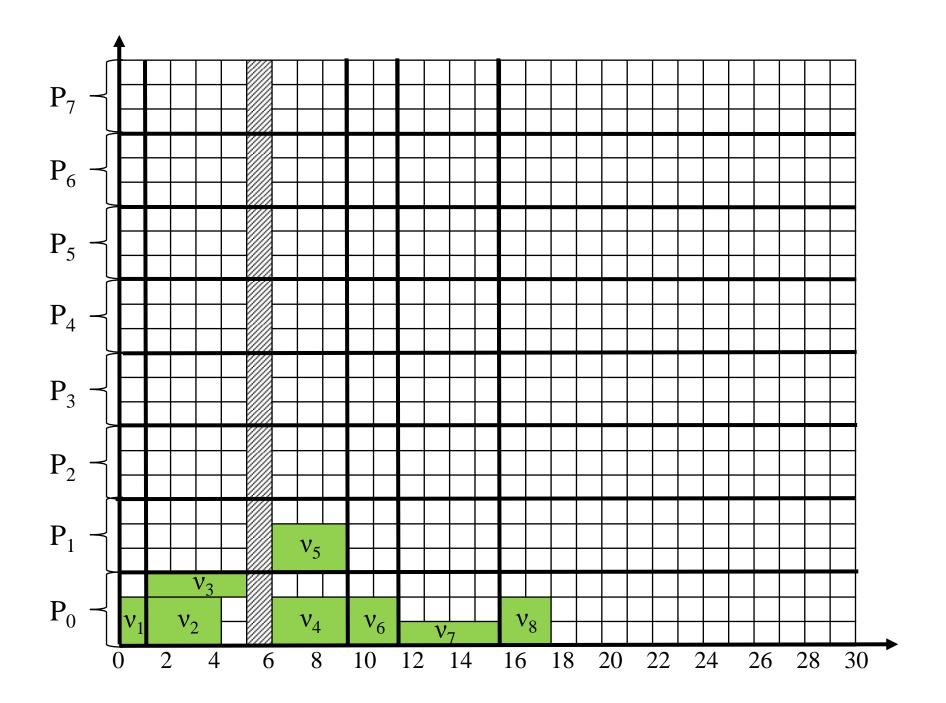
Parallel time was increased!



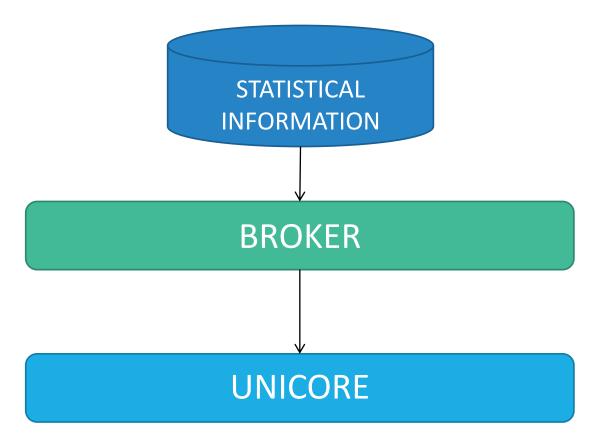








Integration with UNICORE



Conclusion

The following features have been developed:

- a mathematical job model for the description of known and new algorithms for clustering
- a resource scheduling algorithm for problemoriented distributed computing environments