

Managed by

Integration of Grid Cost Model into ISS/VIOLA Meta-Scheduler environment

Ralf Gruber*, Vincent Keller*, Michela Thiémard*, EPFL Oliver Wäldrich*, Wolfgang Ziegler*, SCAI Philipp Wieder*, Forschungszentrum Jülich Pierre Manneback*, CETIC

*CoreGRID members

European Research Consortium for Informatics and Mathematics

Institut Algorithmen und Wissenschaftliches Rechnen

Plan

- HPC Situation
- Application structure
- Gamma Model
- ISS Concept
- Cost Model
- UNICORE-VIOLA-ISS Testbed

Resources chosen to satisfy needs of all local applications

HPC : TOMORROW

How to **BEST** distribute applications to improve overall performance ?

HPC : TOMORROW EVENING

What resources needed to satisfy applications components WITHIN LOWEST COSTS ?

HPC : AFTER TOMORROW

What to do to **BEST** distribute application **COMPONENTS** to improve overall performance ?

New feature to VIOLA/Meta-Scheduler environment: Submit to well-suited machines for application components

Γ model

Characterizes application components and parallel machines

 $\Gamma = \frac{E}{1-E}$ = CPU time over communication time

Γ parameters of application
components for one machine:
CPU time
Communication time
Size of messages

+ Parameters on one **machine**: Memory bandwidth Processor performance Network performance Parameters on other machine: Memory bandwidth Processor performance Network performance

Γ parameters of application component on other machine

Framework

ISS concept

Pre-execution

Resource discovery

Prologue

Decision

Queing

Prologue

Find eligible machines: Yes on

Machine up? Access rights? Program exists? Enough memory?

Decision

Collect data on their availabilities

Evaluate cost function

Submit the job

such that $\forall 1 \le k \le n$

$$\begin{split} &\sum_{k=1}^{n} (K_{e}(C_{k}, R_{i}, p_{k}) + K_{l}(C_{k}, R_{i}, p_{k})) \\ &+ K_{eco}(C_{k}, R_{i}, p_{k}) + K_{d}(C_{k}, R_{i}, p_{k})) \leq KMAX \\ &\max_{i,k}(t_{k,i}^{d}) - \min_{k}(t_{k}^{0}) \leq TMAX \\ &(R_{i}, p_{k}) \in \Re(C_{k}) \end{split}$$

Cost function

$$\begin{aligned} \mathfrak{I}_{C_k}(R_i, p_k) &= \alpha_k(K_e(C_k, R_i, p_k) + K_l(C_k, R_i, p_k)) \\ &+ \gamma_k(K_{eco}(C_k, R_i, p_k)) \\ &+ \delta_k(K_d(C_k, R_i, p_k)) \\ \alpha_k, \beta, \gamma_k, \delta_k \ge 0 \\ \alpha_k + \beta + \gamma_k + \delta_k > 0 \end{aligned}$$

Free parameters α_k , β , γ_k , δ_k

Minimize turn-around time: $\beta = 1$, KMAX= ∞ , $\alpha_k \gamma_k$, $\delta_k = 0 \forall k$

Minimize hardware costs: $\beta = 0$, TMAX= ∞ , $\alpha_k \gamma_k$, $\delta_k \ge 0$

CPU costs K_e

License fees K₁

$$K_{l}(C_{k},R_{i},p_{k}) = \int_{t_{i,k}^{s}}^{t_{i,k}^{e}} k_{l}(C_{k},R_{i},p_{k},t) dt$$

Costs of turn-around time K_w

$$K_w(C_k, R_i, p_k) = \int_{\substack{k \ mint_k^0}}^{\max t_{k,i}^d} k_w(t)dt$$

Energy costs

$$K_{eco}(C_{k}, R_{i}, p_{k}) = \int_{t_{k,i}^{s}}^{t_{k,i}^{e}} k_{eco}(C_{k}, R_{i}, p_{k}, t) dt$$

Epilogue

VAMOS: single job profiles

First VIOLA/UNICORE/Meta-Scheduler/ISS testbeds

12.2007: Swiss HPCN Grid initiative

Outlook: Simulator

Understanding the behavior of the simulated grid depending of the value of the free parameters.

- Usage of old executions data on 2 departemental clusters
 - each job was monitored. Data stored in a mysqlDB
 - Mapping of ganglia and localscheduler (torque) info (VAMOS service)
- simulation of the real situation with UNICORE middeware and the VIOLA MSS simulated on top of it
- Using the real job traces.
- training of the system (broker service).
- Metric used to show the improvement of the grid is the utilization of the machines.

Outlook: Component dependency

• Each component of a workflow is executed on the well suited machine

- Hard problem : need new ideas
- Co-allocation is now made manually.
- With ISS in the future : automatically.

Publications

Pierre Manneback, Guy Bergère, Nahid Emad, Ralf Gruber, Vincent Keller, Pierre Kuonen, Sébastien Noël, and Serge Petiton (2005), "Towards a scheduling policy for hybrid methods on computational Grids", CoreGRID Meeting, Pisa (28-30 November, 2005), to appear in Lecture Notes in Computer Sciences (Springer)

Ralf Gruber, Vincent Keller, Pierre Kuonen, Marie-Christine Sawley, Basile Schaeli, Ali Tolou, Marc Torruella, and Trach-Minh Tran (2005), "Intelligent GRID Scheduling System", PPAM 2005, Poznan, Poland, Lecture Notes in Computer Sciences (Springer) 3911, p. 751-757

Vincent Keller, Kevin Christiano, Ralf Gruber, Pierre Kuonen, Sergio Maffioletti, Nello Nellari, Marie-Christine Sawley, Trach-Minh Tran, Philipp Wieder, and Wolfgang Ziegler, "Integration of ISS into the VIOLA Meta-Scheduling Environment", CoreGRID Meeting, Pisa (28-30 November, 2005), to appear in Lecture Notes in Computer Sciences (Springer)

Ralf Gruber, Pieter Volgers, Alessandro De Vita, Massimiliano Stengel, and Trach-Minh Tran, "Parameterisation to tailor commodity clusters to applications", Future Generation Computer Systems 19 (2003) 111-120

Ralf Gruber, Vincent Keller, Michela Thiémard, Oliver Wäldrich, Philipp Wieder, Wolfgang Ziegler, and Pierre Manneback, "Integration of Grid Cost Model into ISS/VIOLA Meta-Scheduler environment", (2006) to appear.

THANK YOU