
IST-5-033437

A versatile execution management system
for Next-Generation UNICORE Grids

Bernd Schuller, Roger Menday, Achim Streit
Distributed systems and Grid computing division, ZAM, Research Centre Juelich

b.schuller@fz-juelich.de

 UNICORE Summit 2006 August 30, 2006 2

Outline

• Introduction: execution management in Grids
• Motivation: do we need an „X“ NJS ?
• XNJS design & implementation
• Usage examples and performance

– Chemomentum scenarios

• Outlook & future work

 UNICORE Summit 2006 August 30, 2006 3

Execution management in Grids

• obviously, we want to run jobs
• Execution management systems bridge the gap

from abstract middleware
to concrete target systems

?

the Grid

 UNICORE Summit 2006 August 30, 2006 4

Research areas

• interfaces:
• legacy, OGSA-BES, UNICORE 6 atomic services

• languages:
• AJO, JSDL, ...

• integration into Grid infrastructure:
• legacy (e.g. UNICORE 4, GT2.x)
• WS, WSRF (e.g. UNICORE 6, Globus 4)
• WS-NonexistentStandards?

• what about the software that does the actual work?

 UNICORE Summit 2006 August 30, 2006 5

Concrete execution management

• UNICORE 5 as an example
– NJS

 UNICORE Summit 2006 August 30, 2006 6

The UNICORE 5 architecture

 UNICORE Summit 2006 August 30, 2006 7

NJS – the heart of UNICORE 5

• Job management
– authorise users using the UNICORE user database (UUDB)

– translate the incoming abstract jobs into concrete jobs for the target
system

– submit the concrete jobs to the TSI and monitor their status

– manage the outcome

• Communication
– with the client (through the gateway)

– with the TSI

– with other NJSs

• Add-on functionality
– accounting, resource reservation, AFT, ...

 UNICORE Summit 2006 August 30, 2006 8

Core requirements
for EMSs

• manage jobs
– typical activity:

• data in, execute, data out

• manage user access to jobs
– submit, stop, start, ...

• support UNICORE concepts
– Uspace: temporary job dir
– Applications: abstract access to executables
– Abstract filespaces (HOME, ROOT, ...)
– nice to have: UNICORE 5 TSI support

 UNICORE Summit 2006 August 30, 2006 9

Yet another NJS?

• functionality is only half the story...

• Thesis:

existing NJS is not up to the challenges of Grid systems
„beyond“ UNICORE 5:
– it does not meet most of the non functional requirements
– it does not meet some of the functional ones

• present some „evidence“ in the following...

 UNICORE Summit 2006 August 30, 2006 10

Let's limit the scope...

• Deal with „atomic“ activity, which typically consists of
– data stage in
– execute
– data stage out

• no workflow

 UNICORE Summit 2006 August 30, 2006 11

Challenge: Usage scenarios

• Grids come in different sizes ...

• Dimensions:
– big systems or small systems?

– many nodes or few nodes?

– many users or few users?

– small jobs or large jobs?

– focus on response time or reliability?

– ...

• can one size fit all?

 UNICORE Summit 2006 August 30, 2006 12

Goal: Reconfigurability

• be adaptable to varying deployment scenarios
• reconfiguration, not re-implementation

 UNICORE Summit 2006 August 30, 2006 13

Challenge: Grid business rules

• Grid deployments vary in
many operational aspects,
or „business rules“

• Examples
– how is accounting done?

– what and where do we log, or write tracing information?

– how do we deal with communication, e.g. notifications?

– how do we recover from errors?

– how is „successful“ job completion defined?

?

 UNICORE Summit 2006 August 30, 2006 14

Goal: Explicit business rules

• make rules explicit (instead of „hiding“ them in the
code)

• make rules modifiable

EMS Rules

 UNICORE Summit 2006 August 30, 2006 15

Challenge: Add-on functionality

• Different deployments
need to integrate with
different third-party systems

• Examples:
– LDAP, VOMS,...

– Kerberos, Shiboleth, ACEGI, ...

– resource usage, accounting systems

– information services (e.g. GT MDS)

– notification systems (wsn, mail, sms, jabber..)

EMS

A B ?

 UNICORE Summit 2006 August 30, 2006 16

Important special case:
front-end

• trends change
– AJO/UPL
– UNICORE atomic services
– OGSA-BES, ESI
– ... ?

• front-end interfaces
must be exchangeable

• other possiblity: embed EMS into a bigger app

EMS

A B ?

 UNICORE Summit 2006 August 30, 2006 17

Goal: Extensibility

• maximum extensibility
• „design for change“

 UNICORE Summit 2006 August 30, 2006 18

Challenge: Flexible processing

• Requirements may change. The engine may need to
learn „new tricks“.

• Examples:
– add encryption/decryption of data
– add a new filetransfer protocol
– add new types of activity:

might be JSDL today, but what about tomorrow?

will

 UNICORE Summit 2006 August 30, 2006 19

Goal: extensible processing rules

• design system for extensible „processing rules“
• Allow...

– adding new activity „types“
– adding new processing steps for a given activity
– adding new ways of performing the same processing

step

• ... by re-configuration, not re-implementation of
existing code

 UNICORE Summit 2006 August 30, 2006 20

Challenge: Scalability

• Handle large numbers of jobs and/or users
reliably
– at least with well-defined characteristics, for example

performance degrades, but system stays online

 UNICORE Summit 2006 August 30, 2006 21

Goal: Build a scalable system

• Design
– make sure that the system does not go down easily
– design for clustering and loadbalancing

• Implementation
– manage internal resources (memory, threads)

carefully
– avoid large amounts of in-memory storage

 UNICORE Summit 2006 August 30, 2006 22

XNJS:
design and implementation

• not enough time to cover everything, so focus on
– overall architecture

• how modularity and extensibility are achieved

– core engine (action processing)
• flexible processing
• how scalability is achieved

– example: JSDL processing

 UNICORE Summit 2006 August 30, 2006 23

XNJS: overall architecture

Front Controller

AuthZ

pluggable

fixed

Key:Manager

Action
Queue

DB
workers

processing

File transfer
management

Target System Interface

 UNICORE Summit 2006 August 30, 2006 24

Scalability measures

• very low memory footprint
– use database for storing actions
– only book keeping done in-memory
– scales to very high numbers of actions

• many worker threads possible
• component design makes clustering possible

– example: clustered Manager implementation

 UNICORE Summit 2006 August 30, 2006 25

Modularisation concept

• Separate interfaces and implementation classes
• Use a component repository

– Components lookup other components by interface

• Concrete system configuration defined in a config file

Component
Repository

config
file

<<use>>

Component
Consumer

lookup()

Component

<<create>>Configure
via API

 UNICORE Summit 2006 August 30, 2006 26

Modularisation concept

• Possible component repositories one can use
– Spring Framework

powerful (many Java EE APIs, AOP, ...)
integrates very well with other systems
quite big

– PicoContainer
• small and light

• current XNJS implementation: PicoContainer
– simple to replace ☺

 UNICORE Summit 2006 August 30, 2006 27

Action processing

Job Manager

Action
Queue

processing

 UNICORE Summit 2006 August 30, 2006 28

Actions

• Actions are the things that the XNJS processes
– major pieces of information

• activity description (any XML)
• status
• unique ID
• Client (user and security information)

• new action types can be added easily
• add code to process the action
• re-configure the XNJS

• Example: Action of type „JSDL“

 UNICORE Summit 2006 August 30, 2006 29

Processing basics

Manager Job
Runner

action=get()

ProcessorA

process(action)

Proc.N...

process(action)

put(action)

X

action

 UNICORE Summit 2006 August 30, 2006 30

Flexible processing

• processing chains are
configurable per
action type

• new action types can be added without changing the
XNJS core
– need to add new Processor implementations
– edit config file
– in principle even at runtime

ProcessorA ProcessorB

 UNICORE Summit 2006 August 30, 2006 31

example: JSDL processing

<<jsdl>>
action

state==created

runningpre-
process

<<stagein>>
action

pluggable protocols:
-cp, http
-UNICORE 6

map Applications to
executables
map JSDL resource
requests to target
system resources

IDB

donepost-
process

<<stageout>>
action

<jsdl:JobDefinition xmlns:jsdl="...">
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName>Date</jsdl:ApplicationName>
 <jsdl:ApplicationVersion>1.0</jsdl:ApplicationVersion>
 </jsdl:Application>
 </jsdl:JobDescription>
</jsdl:JobDefinition>

 UNICORE Summit 2006 August 30, 2006 32

Flexible processing

• Processors can be used for any activity within the
XNJS
– execution
– filetransfer
– logging, tracing, monitoring
– notifications
– third-party system integration
– ...

• even workflow: workflow engine prototype for
executing DAGs exists

 UNICORE Summit 2006 August 30, 2006 33

Chemomentum in a nutshell...

• ... as seen from the „Grid“ point of view
• Take UNICORE 6 base services (job execution and

storage)
• Build workflow processing on top

– domain specific: „domain expert“ user

• Clients will be portals, web clients, standalone clients
• Main aims

– scalable, well-performing (throughput, response times)
– admin friendly, easy to install new nodes

 UNICORE Summit 2006 August 30, 2006 34

XNJS usage scenario

• Users submit workflows to the Chemomentum
workflow system, which results in many small jobs
being submitted to the underlying Unicore 6 services

• Some numbers:
– 10 users submitting 1 workflow each
– 20 servers
– 1 workflow = 1000 jobs
– 10000 jobs
– 500 jobs per server

 UNICORE Summit 2006 August 30, 2006 35

Demo

• submit 500 jobs to a single XNJS instance
• job characteristics

– simple „Date“

• XNJS settings:
– 128 MB for the VM
– 20 worker threads
– embedded Java TSI
– HSQLDB embedded database for persistence

• measure
– time for submitting the jobs
– overall time needed

 UNICORE Summit 2006 August 30, 2006 36

Some measurements...

Number of Jobs 100 500 1000 5000

Submission time [sec] 1 5 7 28
Submission rate [1/sec] 100 100 90 185
Overall time [sec] 8 35 71 331
Job rate [1/sec] 12 14 14 15

 UNICORE Summit 2006 August 30, 2006 37

Tweaking possibilities

• very flexible engine, adaptable to the usage scenario
• can measure performance and optimize the „critical

path“
• for example

– use more workers (can add them at runtime)
– tweak processing to decrease turnaround times:

• e.g. use two identical processors per cycle
• example: 4 processors, 500 jobs -> 55 jobs/sec
• why? less database access, and less time spent in the

queue

 UNICORE Summit 2006 August 30, 2006 38

XNJS as UNICORE 6 backend

 UNICORE Summit 2006 August 30, 2006 39

XNJS as UNICORE 6 backend

• Web service frontend: UNICORE atomic services
• use XNJS instead of NJS as backend
• very promising, but...
• ... topic for a different talk!

 UNICORE Summit 2006 August 30, 2006 40

Summary

• Achieved:
– reconfigurable
– extensible
– flexible processing
– scalable
– embeddable

• Needs more work:
– explicit business rules

 UNICORE Summit 2006 August 30, 2006 41

Options for future work...

• support DRMAA TSI
• support for important OGSA specs

– HPC profile
– AuthZ
– OGSA BES (more a front end issue)

• investigate options for realising „explicit business
rules“

 UNICORE Summit 2006 August 30, 2006 42

Conclusions

• Presented XNJS execution management system
• UNICORE concepts: Uspace, Applications, TSI
• Simple, high-performance core
• Modular, flexible, extensible, and highly scalable
• „native“ JSDL support

– execution, data staging with pluggable protocols

• sound basis for future work
• download it and try it

(„experimental“ part of UNICORE 6 alpha)

 UNICORE Summit 2006 August 30, 2006 43

Questions?

^

EM
S

JSDL

XNJS V1.0 alpha

