

Direction and Trends in Grid Computing Standards

Dr. David Snelling
Distributed Services Research Group
Fujitsu Laboratories of Europe

Outline

- Grid Computing Landscape
- Standards Impact on that Landscape
- Standards Trends
- "Top Ten" Grid Standards
- Managing Convergence of Standards
- Unicore and Standards
- Next Steps?

- Orchestrator: Collaboration Grids
 - Multiple institutions, secure, widely distributed, VOs
 - Service level agreements & commercial partnerships
 - Overall Aim: New modes of business and research
- Service Provider: Enterprise Grids
 - Virtualization of enterprise resources and applications
 - Aggregation and centralization of management
 - Overall Aim: Reduce total cost of ownership
- Systems Manager: Clusters
 - Networks of Workstations, Blades, etc.
 - Cycle scavenging, Homogeneous workload
 - Overall Aim: More efficient use of assets

Standards Impact on Grid Computing

... The Trend is Better

High Impact "Grid-Like" Standards

- WS-Addressing
 - Meets addressing requirements missed in basic WSs
 - Uses structured identifiers and protocol rules
 - Is (at least theoretically) binding independent.
- OGSI, WSRF, WS-Transfer, WS-Resource Transfer
 - Acknowledges patterns in management and discovery
 - Broad applicability
 - Clearly includes various approaches
- WS-Notification, WS-Eventing, WS-Event Notification
 - Highlights a fundamental pattern in distributed systems
 - Critical space for standards

Grid Computing's Top Ten Standards

- Stable
 - JSDL
 - OGSA-BES
 - GridFTP
 - OGSA Security Profile Core
 - OGSA Security Profile Secure Channel
- Evolving with a Clear Direction
 - OGSA Base Profile (Next Revision)
 - WS-Addressing, WS-Resource Transfer, WS-Event Notification
 - OGSA-AuthZ-SAML
 - Including WS-Security
- Under Development
 - DMI
 - OGSA-RSS
 - OGSA Information Model

Evolution of Standards В Ε α JMS/TSS Standards Pre **BES 1.0 ESI** Cloud **Standards** Cloud **GRAM DMI** RZ.

Convergence Toward WS-Resource Transfer

- All Specifications Cover the same Use Cases
 - Stateful Services/Resources
 - Access to properties of these
 - Support for lifetime management
 - Mechanisms for subscription
- Observation
 - Most functional operation of a service is orthogonal to these "management" related capabilities
- Strategies
 - Use stable API for both client and service
 - Model service state with properties
 - Don't use state modifying operations, e.g. SetResourceProprties
 - Include an abstract notion of lifetime in all services
 - Expect that notifications of property changes will be possible

A Peek at the OGSA Information Model

Unicore and Standards

^{*} Future plans or in process

What Next for Unicore and Standards?

- Unicore has lost a lot in the recent quest for standards
 - Workflow
 - Integrated file transfer protocol
 - Incarnation and seamless computing
 - Client integration
 - Extensibility
 - Integrated job/task management
 - Seamless file access
 - Portfolio support
- Starting points
 - Grid Beans integration with SAGA standard?
 - REST based Grids?
 - Service side developer APIs?
 - ????

What is the impact of water on a lava field?

