
P. Bala, K. Benedyczak, S. van den Berghe, R. Menday, B. Schuller

UNICORE security stackUNICORE security stack

OutlineOutline

 Scope of this presentation.

 Outside world: GSI security model.

 UNICORE world:

 authentication,

 trust delegation.

 ETD versus Proxy certificates.

 Future of UNICORE security.

 Current problems and possible solutions.

Scope of this talkScope of this talk

 Only low level security will be presented: authentication and
trust delegation.

 Authorization, user management, VOs won't be discussed.

 Comparison with GSI model is important as it is de facto a
standard in the grid world.

Authentication and trust delegationAuthentication and trust delegation

 Authentication is the process of verification a communication
peer's identity.

 Trust delegation is a process of assigning one's privileges to a
trusted 3rd party.

 Privileges delegation would be a definitively better name.

 A lot of distributed systems do not use trust delegation at all.

 Simple client-server systems, where a remote service works only
locally on a behalf of a user and the service is privileged to change
its effective user id. Example: SSH daemon.

 Statically configured systems, where all sites know each other. E.g.
systems using /etc/hosts.equiv

 Systems which take over users' credentials. For example typical
Push-email provider for cell phones, requires you to give it a
password to your remote mailbox.

Example of trust delegation applicationExample of trust delegation application

1. Send a job

Broker

Execution
site

Storage
element

2. Forward
the job to

a chosen site

3. Fetch a remote
 file used as
the job's input

Grid Security InfrastructureGrid Security Infrastructure

 In Globus, gLite and ARC authentication, trust delegation and
SSO is achieved by usage of Proxy Certificates.

 The initial proxy certificate is issued by a user.

 Its DN is similar to the user's DN.

 Proxy contains a new public key and is accompanied by a
corresponding private key.

 When user tries to use a remote service, middleware uses the
initial proxy to issue another proxy – for the service.

 The generated proxy is stored in the FS and private key is never
encrypted.

 The service use the proxy to initiate a SSL/TLS connection

 It is used for SSO on the user's machine as globus/gLite/... are
composed of hundreds of programs.

Proxy certificates - exampleProxy certificates - example

 Proxy certificates use impersonation: the service receives the
credentials which resemble original user's credentials:

[golbi@i2ui ~]$ grid­proxy­init
Your identity: /C=PL/O=Grid/O=ICM/CN=Krzysztof Benedyczak
Enter GRID pass phrase for this identity:
Creating proxy Done
Your proxy is valid until: Wed Apr 28 01:33:48 2010

[golbi@i2ui ~]$ grid­proxy­info
subject : /C=PL/O=Grid/O=ICM/CN=Krzysztof Benedyczak/CN=213687476
issuer : /C=PL/O=Grid/O=ICM/CN=Krzysztof Benedyczak
identity : /C=PL/O=Grid/O=ICM/CN=Krzysztof Benedyczak

TD with proxiesTD with proxies

Broker

Execution
site

Storage
element

X.509 Cert
CN=Chris
Issued by CA

TD with proxiesTD with proxies

Broker

Execution
site

Storage
element

X.509 Cert
CN=Chris
Issued by CA

Proxy Cert
O: CN=Chris,
CN=1
I: CN=Chris

TD with proxiesTD with proxies

Broker

Execution
site

Storage
elementProxy Cert

O: CN=Chris,
CN=2
I: CN=Chris,
CN=1

Proxy Cert
O: CN=Chris,
CN=1
I: CN=Chris

TD with proxiesTD with proxies

Broker

Execution
site

Storage
elementProxy Cert

O: CN=Chris,
CN=2
I: CN=Chris,
CN=1

Proxy Cert
O: CN=Chris,
CN=3
I: CN=Chris,
CN=2

Proxy certificates: selected problemsProxy certificates: selected problems

 Standards support. There are three flavors of Proxy certificates:
legacy, pre-RFC, RFC 3820.

 Private key protected by FS rights only: solved by short validity
(24-48 hours).

 Short validity is a problem in case of long-running jobs. Solved
by an additional infrastructure for renewing proxies.

 Complicated renewal: must be performed, different and
incompatible tools used.

 Impersonation blurs the delegation chain. It is hard (if not
impossible) to answer a trivial question: through which sites the
request came?

UNICORE authenticationUNICORE authentication

 In UNICORE authentication is strictly X.509 SSLv3/TLS based.

 Authentication can be performed by a Gateway or by a UNICORE/X
site if direct access is permitted.

GG
aa
tt
ww
aa
yy

UNICORE/X

client-authenticated
TLS

request

request

authN
assertion

 Gateway functions as a single point of entry: only one firewall
port need to be opened.

UNICORE authenticationUNICORE authentication

 If direct access is permitted Unicore/X site can't trust that
authentication assertion is genuine. It must be signed by
gateway and signature must be checked by a site.

GG
aa
tt
ww
aa
yy

client-authenticated
TLS

request

authN
assertion

UNICORE/X

client-authenticated
TLS

request

request

Explicit Trust DelegationExplicit Trust Delegation

 Explicit Trust Delegation (ETD) was introduced in UNICORE 5.

 The paper by D. Snelling, S. van den Berghe and V. Li: "Explicit
Trust Delegation: Security for Dynamic Grids", available from:
http://www.fujitsu.com/downloads/MAG/vol40-2/paper12.pdf
provides a detailed description.

 UNICORE 5 ETD and UNICORE 6 ETD differ significantly!

 UNICORE 5 ETD can be considered a static ETD while UNICORE 6
ETD is really dynamic.

 First of all the original ETD defined that three different entities
may be bound to each grid job:

 Consignor: the entity which actually sent a job.

 Endorser: the entity which authorized the job.

 User: the entity on whose behalf the job was submitted.

ETD in UNICORE 5 in actionETD in UNICORE 5 in action

 Endorser was the one who signed part of the job (a sub task).

 UUDB was used to explicitly state who can send jobs on
somebody's behalf.

 As a result:

 complicated to understand (difference between endorser and user,
who should be authorized)

 static as all trust relationships had to be manually entered into
UUDB (OK for portal as a single point of entry to a grid but
unsuitable for regular users).

ETD in UNICORE 6ETD in UNICORE 6

 Endorser role is "discriminated".

 It could be used in future however it seems we don't have
important reasons for implementing this concept.

 User and consignor roles are the primary concepts.

 Consignor creates and sends a request.

 It is a client in client-server model.

 Server establish who is the request's consignor by means of
authentication.

 User is the principal on whose behalf the request should be
invoked.

 I.e. the request should be invoked with all User's permissions.

 Typically the request is related to a job which was initially initiated
by the User.

 By default User==Consignor.

 It is similar to "effective user (id)" in UNIX systems.

User selectionUser selection

 Each and every Consignor can request that operation it is
invoking should be performed on behalf of an arbitrary User.

 Technically this is performed by adding a special token, called
User assertion into a SOAP header.

 The User assertion is unsigned.

 Basically speaking it is a wish.

User selection approvalUser selection approval

 Site which receives a request with a User assertion must
somehow verify if a Consignor is allowed to perform operations
on the User's behalf.

 Consignor==User is always allowed.

 If Consignor has a special role called 'trusted-agent' then user
selection is accepted. This mimics the UNICORE 5 model.

 Note that this feature is not widely used (if anywhere) and not well
tested.

 Otherwise the Consignor must present a valid trust delegation
assertion, issued by the User.

Details of ETDDetails of ETD

 ETD assertion contains the following data:

 the trust delegation issuer (who is the user in case of a single
trust delegation),

 the delegation subject,

 the validity time frame of the assertion,

 other usage restrictions,

 a special token which confirms that the whole document is a trust
delegation,

 an initial trust delegation issuer called a trust delegation
custodian (i.e. the user),

 signature made by the issuer.

TD with ETDTD with ETD

Broker

Execution
site

Storage
element

X.509 Cert
CN=Chris
Issued by CA

ETD 1
I&Sig: Chris
S: Broker
C: Chris

TD with ETDTD with ETD

Broker

Execution
site

Storage
element

X.509 Cert
CN=Broker
Issued by CA

ETD 1
I&Sig: Chris
S: Broker
C: Chris

ETD 1
I&Sig: Chris
S: Broker
C: Chris

ETD 2
I&Sig: Broker
S: Compute
C: Chris

TD with ETDTD with ETD

Broker

Execution
site

Storage
element

X.509 Cert
CN=Compute
Issued by CA

ETD 1
I&Sig: Chris
S: Broker
C: Chris

ETD 1
I&Sig: Chris
S: Broker
C: Chris

ETD 2
I&Sig: Broker
S: Compute
C: Chris

ETD verificationETD verification

 To verify a single ETD assertion quite simple algorithm is used:
signature must be valid, and must be made by the issuer.

 Also all restrictions as validity time should be respected.

 As we could see the ETD assertions may be chained. To verify
the chain the following rules are used:

 All chain assertions must have a common custodian equal to the
expected custodian.

 An initial assertion issuer must be equal to the chain custodian.

 For every assertion, except the initial, with issuer A, there is an
assertion with the A subject (generally it is the previous assertion
in the chain).

 It means that as the delegation is passed along the chain, the subject
of a delegation assertion becomes the issuer of the next assertion in
the chain.

 Without a custodian field a malicious site could produce fake
"trust delegation" chain by combining two unrelated TDs.

Digital signature and non-repudiationDigital signature and non-repudiation

 UNICORE security stack guarantees job's non-repudiation.

 Non-repudiation ensures that job submitter can not deny that it
actually submitted the job.

 The non-repudiation is achieved by requirement of a digital
signature for key operations.

 As digital signature checking is an expensive operation it can be
disabled.

 Digital signature is always done by a consignor.

 Currently the following actions require a digital signature:

 TSF: CREATE TSS

 TSS: SUBMIT job

 SMS: DELETE, RECEIVE, RENAME, SEND, IMPORT, EXPORT,

 WSRF: DESTROY, SCHEDULE_DESTROY.

Technical realizationTechnical realization

 Client must know the DN of the ETD receiver. Obvious but...

 not trivial as a client typically can talk only to the gateway while
the trust must be delegated to a service. UNICORE publishes DNs
of services in EPRs stored in registry.

 User, Gateway-AuthN and ETD assertions are all encoded as
SAML attribute assertions with a predefined attribute used to
encode an additional data and to distinguish them.

 User assertions can carry additional consignor's preferences
regarding a request.

 Gateway-inserted authN assertion is always the first assertion due
to several implementation reasons.

 This approach has two drawbacks:

 It must be guaranteed that "attributes" from the special assertions
are not mixed with a normal SAML attributes which may be pushed
by a client for authorization.

 It would be more logical to use SAML Authentication assertion for
the Gateway authentication statement.

Pros and cons of the UNICORE approachPros and cons of the UNICORE approach

 Advantages of the presented model (in comparison to Proxy
certs):

 ETD assertions do not carry a sensitive data and therefore can
have a longer validity then Proxy. No need to develop extension
strategies.

 The system is transparent – it is clear who does what and on
whose behalf.

 Disadvantages (in general):

 Currently nearly all WS operations require an additional data: User
assertion and ETD assertion(s). This is a significant processing
overhead.

 X.509 infrastructure is very complicated and end users do not
understand them. With ETD it is even harder.

 Even if somebody do understand the PKI, it is quite cumbersome to
use multiple computers and to renew (usually each year) the X.509
certificate.

Outlook for the futureOutlook for the future

 Eliminate the need to send the ETD/User assertion each time.

 May be achieved by creating a security session (or association).

 Require universal tools to support server and client side (especially
caching of ETD assertions).

 Introduce Sort-Lived-Certificates. SLCs can resolve some of the
general X.509 flaws.

Thank you!
Questions?

This work was supported by Kardionet project.

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28

