
Monitoring of the UNICORE middleware

Piotr Ba la, Krzysztof Benedyczak, Mariusz Strzelecki
Faculty of Mathematics and Computer Science

Nicolaus Copernicus University &
Interdisciplinary Center for Mathematical and Computational Modeling

Warsaw University

May 19, 2010



Outline

1 Introduction to grid monitoring and current status of UNICORE moni-
toring tools

2 PL-Grid UNICORE monitoring system
Tests dependency
Probes for services monitoring
Monitoring of additional information
Logs monitoring
Simple installation of monitoring infrastructure

3 Nagios demonstration

4 Summary and future plans



Introduction

Reasons for grid monitoring:

to ensure reliability or find cause of failure immediately

to collect statistical data

to inform users about the state of grid

to see if production status is reached

Areas of grid monitoring:

System-level grid monitoring

User-level grid monitoring

Server-side middleware monitoring



Monitoring of UNICORE so far

Common Information Service - collects grid usage data,
checks CIP (UNICORE/X) availability

SIte MONitoring 6 - runs a workflow or job using UCC and
checks potential exceptions or errors on client side



PL-Grid UNICORE monitoring system

functionality test for each service or service container

ability to quickly and accurately indicate reason of a failure

tests dependency allows overhead minimization of
UNICORE

test for every installed scientific application

tests for additional data that the services provide (free disk
space on SMS, installed application versions, UNICORE
service versions)

easy one-script installation

programmed using Perl and Java, distributed as open source

Nagios as well-known, mature test execution and
notification environment



Tests dependency graph

negative and positive dependencies



check sms

generates test file of given size and then tests all commands
that can be executed via SMS

lists SMS content: ucc ls

uploads file: ucc put-file

downloads file: ucc get-file

removes file: ucc rm

checks output from every command to grab errors and at the
end checks if files (generated and downloaded) are the same,
additionally informs user about upload and download speed

in standard UNICORE environment this script test both:
Global SMS and SMS of every UNICORE/X instance

additional test (in development state) checks free space on
SMS every 24 hours (using ucc wsrf getproperties

[sms address])



check application

submits previously prepared job description and waits to finish
the job

tests output files with given logical condition, e.g.
equals(#stdout,/etc/nagios/UNICORE/R/r output.stdout)

and valid pdf(#plots.pdf)

files which are proper output from job are saved in installation
process

if job fails or condition is not fulfilled, test informs user about
the situation

used to check every scientific application (currently supported:
Blast, Clustal, Fluent, R) and also acts as test ”UNICORE
Job” (just calling echo to test if UNICORE/X job submission
works)



check workflow

this test takes the following steps:

uploads test file to Global SMS
submits workflow to Workflow Service asynchronously
checks the status of Workflow every 10 seconds and waits to
finish it
checks status and output file

default workflow executes cat commands chain over all TSFs
that Service Orchestrator manages (workflow description is
created by installation scripts)

this is the integration test: if it succeeds, no other test is
executed (to minimize network traffic and overhead of
UNICORE)



Other minor probes

check gateway - connects to Gateway and analyses ”monkeys
page”, checks if every required VSite is available

check registry - executes ucc system-info to get services
from Registry, checks if every entry marked in configuration as
required is available

check uvos - gets identity description from UVOS and
compares it with data get in installation process

check unicorex - checks if TSF is available in Registry,
optionally lists entries in Local Registry of UNICORE/X, tries
to create TSS if not found



Missing probes (in development stage)

check cis - connects to CIS and lists CIPs that are managed

check cip - connects to CIS, gets the data from requested CIP
and compares them with data gathered from CIP directly (via
ucc query-cip)

check servorch - submits work assignment to Service
Orchestrator

check workflow service - uses ucc workflow-info to check
if Workflow Service is available and responds for a query



Monitoring of additional information

can gather information on free space on SMS

can check versions of UNICORE services containers

can check if scientific applications installed on target systems
are not too old



Logs monitoring

application that periodically runs on server side and checks for
errors or warnings in log files from last time

ability to ignore ”known” error log entries

if notices a problem, sends information to monitoring host via
Nagios Service Check Acceptor

Nagios sends notifications to administrators with observed log
lines (log monitor stops working unless administrator confirms
the problem as solved)



Installation of monitoring infrastructure

installer must be initialized only with the following properties:

UCC path and configuration file
UVOS CLC path and configuration file
Registry URL
Site name
Workflow service name
Nagios contact group (to notify about problems)
UNICORE installations dependencies description

installer generates required Nagios configuration and:

stores data gathered from UVOS for future tests
checks availability of Workflow system in given Registry and
makes complex workflow description to test all TSFs
checks for availability of scientific applications and installs
tests from templates



Nagios demonstration

https://alfred.studmat.umk.pl/nagios/

https://alfred.studmat.umk.pl/nagios/


Summary

the monitoring system is able to supervise all UNICORE
atomic services, the Workflow system and the UVOS server

all tests are placed in dependency graph to minimize
UNICORE monitoring overhead

the additional effort has been performed to monitor
application functionality

the constant monitoring allowed to identify few bugs in the
UNICORE middleware

the system is deployed in PL-Grid project, today one
monitoring site regularly checks 4 complete UNICORE
installations

Current version of monitoring system we develop can be obtained
from: http://unicore-life.svn.sourceforge.net/viewvc/unicore-life/

monitoring/

http://unicore-life.svn.sourceforge.net/viewvc/unicore-life/monitoring/
http://unicore-life.svn.sourceforge.net/viewvc/unicore-life/monitoring/


Future work

1 Developing tool to monitor logs on server side

2 Completing services probes list

3 Adding additional information probes

4 Making it possible to get statistical data (job execution time,
free space) from probes and draw graphs

Release of whole monitoring system is planned at the end of work
with points 1-3.



Thank you


	Introduction to grid monitoring and current status of UNICORE monitoring tools
	PL-Grid UNICORE monitoring system
	Tests dependency
	Probes for services monitoring
	Monitoring of additional information
	Logs monitoring
	Simple installation of monitoring infrastructure

	Nagios demonstration
	Summary and future plans

