Grid-based processing of high-volume meteorological data sets
Outline

- **Introduction**
 - Energy meteorology, WISENT
- **Challenges**
 - Parallel processing, Data transfers
- **Utilizing Grid technologies**
 - Condor, Globus Toolkit 4, UNICORE
- **Future Work**
Energy meteorology

- Research on the influence of weather and climate on the transformation, transport, and utilization of energy from renewable energy sources
 - Forecast models of energy production
 - Finding optimal locations for power plants
- Interdisciplinary field of research (meteorology, physics, engineering, ...)
- Large and heterogeneous data sources (satellites, earth stations, ...)
- Compute-intensive applications on high-volume data sets
wisent.d-grid.de

- German e-Science project in the domain of energy meteorology
- Associated with D-Grid (German Grid initiative)
- Started in October 2005 (duration for 3 years)
- Distributed resources (CPUs, data storages)
- ~ 1 TB new data per month (increasing)
 - Mostly raw or post-processed satellite images
 - Archived in the “Data and Information Management System” (DIMS)
 - ~ 300 TB; planned extension to 3 PB
- Objective: Build Grid infrastructure based on these resources to support (large) data transfers and distributed processing
Planned Grid Infrastructure

- Desktop-PCs
- Cluster
- Satellites
- Earth Stations
- Storage Center
- Computing Center
- Wind Power Plants
- Solar Power Plants
Parallelization

- **Status:**
 - Most applications run on one single machine
 - Parallelization is achieved with Parallel virtual machine (PVM) / ppmake
 - Most applications can be parallelized at data level

- **Objective:**
 - Parallelization of each application utilizing existing CPU resources (desktop PCs, clusters, etc)
 - Recognizing user activity on desktop PCs
 - Authentication and authorization
 - Easy access to computing resources via the Grid infrastructure
Data transfers

- **Status:**
 - Multiple (~ 100) data-transfers per day (periodically/on demand)
 - Size ranges from a few kilobytes up to several hundred megabytes
 - Number and size will increase in future
 - Often FTP-based transport with manual error recovery in case of failures

- **Objective:**
 - Security
 - Encrypted data transfers
 - Authentication and authorization
 - Reliable data transfers with automatic recovery
 - Monitoring for accounting and billing
 - Easy initiation of data transfers within the Grid infrastructure
Bottom-up approach

Source: IBM
Parallelization scenario

- libRadtran/MYSTIC
- aerosols, clouds, ...
- earth's surface
- irradiation
- space

- PVM/ppmake

- Cluster (16 Nodes)
- Several Servers

- ~15 desktop PCs
Condor

- **Parallelization of each application utilizing existing CPU resources**
 - “Cycle scavenging” - using idle-periods of computational resources
 - Very suitable for applications using data parallelization
 - Rudimentary support for MPI
 - Scheduling strategy sufficient to adequately utilize resources

- **Authentication and authorization**
 - Possible but not tested
 - Not necessarily needed at Intra-Grid level
 - Sandbox approach is sufficient

- **Recognizing user activity on desktop PCs**
 - Tracking user's activity (mouse, keyboard, etc)
 - Migration of jobs to other nodes on user's demand

- **Easy access to computing resources via the Grid infrastructure**
 - Text-based interface is not very user-friendly?
Condor

Pros:
- Good approach for pooling CPUs at Intra-Grid level
- Capable of construction of “desktop-Grids”
- Solid documentation and long development history
- Wide user base

Cons:
- No Open Source project
- Large number of configuration settings (but well-documented)
- Demands on network connectivity
Data transfer scenario

Utilizing Grid technologies
Globus Toolkit 4

- **Security**
 - Certificates based on X.509 (SSO) for authentication
 - Community Authorization Service (CAS) for authorization (not evaluated)

- **(Reliable) Data transfers**
 - GridFTP as enhanced FTP
 - GridFTP uses no data channel encryption per default
 - Encryption modes “Safe” and “Private” reduce data throughput
 - New port assigned for each data channel
 - Reliable File Transfer (RFT)
 - Does not support GridFTP-based encryption

- **Monitoring for accounting and billing**
 - Monitoring and discovering service (MDS) (not evaluated)

- **Easy initiation of data transfers within the Grid infrastructure**
 - Text-based interface is not very user-friendly?
Globus Toolkit 4

- **Pros:**
 - Support of WSRF and most services proposed in OGSA
 - Comprehensive data services
 - Interoperability with Condor

- **Cons:**
 - Dynamic port assignment conflicts with current firewall policies
 - Open a whole port range (only temporary solution)
 - DLR develops Application Level Gateway (Proxy in the DMZ)
 - Use of encryption in RFT is currently not possible
Currently little experience with UNICORE 5 and evaluation is ongoing

Pros:
- Complete encryption of communication
- Gateway uses only one port
 - Location of Gateway in DMZ could possible
- Graphical client for job submission and monitoring
 - Possible automation?
- Workflow language for modelling process chains
 - Which capabilities?
- UNICORE 6 has promising extensions
 - Support of Grid standards

Cons:
- Execution of a workflow element must be assigned to a specific VSite
 - Optional dynamic VSite-selection
- UPL-based data transfers are not sufficient for large data sets
Future work

- UNICORE (6) seems very interesting for fulfilling many requirements in WISENT
- We still need more experience with UNICORE
- Evaluation of other Grid middleware as gLite, Sun N1 Grid Engine, etc
- More investigation of interoperability
Questions?