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Outline

• Motivation: high-throughput computing
• What is a tuple space?
• „XML Spaces“ based on WSRFlite / UNICORE 6
• Job execution using the tuple space
• Performance measurements and results
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High-throughput computing – 
characteristics and challenges

• Characteristics
– Many (small) jobs, many (small) resources

• Examples
– Docking (e.g. WISDOM), 
– High-throughput screening, e.g. apply a QSAR model 

for property prediction for a very high number of 
structures

split join

process
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Example: find a drug for 
combating avian flu

Garcia-Sosa, A.T., Sild, S., Maran, U. ChemMedChem, submitted 2008.
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Using docking for virtual screening

• Docking is very well suited for massive 
parallelization: 1 job per docking run

• Docking was run through the UNICORE command 
client. UNICORE was used for the distribution, 
running and output recollection of the jobs

• Single UNICORE site
• ~ 1,500 jobs per day on 20 cluster nodes
• Each job took around 15 mins. average real time
• 50-100,000 ligands per virtual screening
• 33-66 days on 20 nodes (or 7-12 days on 100 nodes)
• Promising strategies and molecules for new inhibitors 

of avian flu have been obtained

Garcia-Sosa, A.T., Sild, S., Maran, U. ChemMedChem, submitted 2008.
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High throughput computing –
Problems of conventional architectures
• Challenges

– Scalable resource discovery, Efficient resource usage

• the „information gap“: a lot of state information must 
be available to the information systems to allow 
efficient resource usage

• Scalability: information systems and schedulers 
(usually) become bottlenecks as execution nodes 
are added
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High-throughput computing – 
UNICORE 6 based approaches

• Commandline client (UCC) batch mode

• UNICORE 6 Workflow system

• Tuple Space based approach

• Other(s)
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Tuple Space basics

Tuple Space

write()

Client

Query template

XML Document

read()

Client

take()

Client
x
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Tuple Spaces principles

• Tuple space stores entries
• Tuple space entries have a lifetime („lease time“)
• Basic API

– write(Entry, LeaseTime)
• inserts new entry into the tuple space

– read(Template, Timeout) 
• returns matching entry

– take(Template, Timeout)
• returns matching entry

and removes it from the tuple space

– notify(Template)
• tuple space will notify client upon insertion of matching 

entry
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Template-based queries

• read(), take() use „query by example“
• Supply a template for querying with fields set
• Example:

– give me an entry where the field „status“ has the 
value „DONE“

• Intuitive and easy to use
• Not as powerful as a real query language (such 

as SQL, XPath or XQuery)
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JavaSpaces

• Java based tuple space (stores Java objects)
• Part of Sun's JINI specification
• Opensource and commercial implementations 

exist
– Gigaspaces (commercial)
– Sun JINI
– Blitz

• Stores Java objects
• Communicates using Java RMI (but also SOAP 

etc.)
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Tuple spaces: pro&con

• Pro
– Decouple communications
– Enables highly scalable („share-nothing“) 

architectures

• Con
– Tuple space itself is hard to distribute
– Tuple space itself may become the bottleneck
– Not all applications fit this model
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Idea: „XML Space“

• Store any XML documents
• Use UNICORE 6 protocols and tools
• WSRF fits the tuple space model very nicely

– resource + lifetime concepts
– XML centric

• Diploma thesis by Miriam Schumacher
– used UNICORE 6 / WSRFlite to implement such 

an „XML space“

– Prototype + example application available
http://unicore.svn.sf.net/svnroot/unicore/contributions/unicore-spaces/trunk
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UNICORE Spaces

• Small add-on to UNICORE 6
• Two services

– Space
• web service, offering write(), read(), take()

– SpaceEntry
• WSRF service
• Each instance corresponds to one entry in the 

spaceWS- 
• XML document is stored as a WSRFresource 

property

• Example Client (SpaceClient)
• ca. 300 lines of code
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Job execution example

Tuple space

Client Execution
Node

<Job xmlns=...">
 <JobID>my test job</JobID>
 <Status>NEW</Status>
 <JSDL>
  <jsdl:JobDescription>
   <jsdl:Application>...</...>
  </jsdl:JobDescription>
 </JSDL>
</Job>

1
<Job xmlns=...">
 <JobID>my test job</JobID>
 <ServerJobID>...</ServerJobID>
 <ServerID>...</ServerID>
 <Status>SUBMITTED</Status>
 <Address>...</Address>
 <JSDL>...</JSDL>
</Job>

2

<Job xmlns=...">
 <JobID>my test job</JobID>
 <ServerJobID>...</ServerJobID>
 <ServerID>...</ServerID>
 <Address>...</Address>
 <Status>DONE</Status>

 <JSDL>...</JSDL>
</Job>

3
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Job execution

1. write()
job.status=NEW

Client

Execution
Node

2. take()
job.status=NEW

3. write()
job.status=
SUBMITTED

Tuple space

5. write()
job.status=
DONE

6. take()
job.status=DONE

4. execute
locally
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Components

Tuple space

Job TakerJob Taker

TSS, JMS

XNJS

submit/start job
notify on
status
changes

take() new jobs
write() submitted jobs
write() done jobs

Client
write() new jobs
take() done jobs

Execution
Node
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Performance test configuration

Client
node5

Execution
node3

Execution
node2

Execution
node4

Execution
node1

Tuple space
node0

Gateway
Shared registry
XUUDB
node0

UCC
  - batch mode (w/o fetch output)
  - client for space-based batch mode
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Some first results: job throughput

for comparison: UCC batch-mode, 100 jobs @ 4 nodes = 126 seconds
(ucc „tuned“ to not check resource availability and to not get any output files)

Nodes Jobs

100 400 1000 5000

1 97
2 48 146 520
4 26 80 231 940
5 22
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read() / take() : performance
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Unit test!

read()/take() 
becomes a bottleneck
when many clients
access the same space
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Summary: 

• Very promising!
• Pro

– Excellent for simple requirements
– Highly scalable
– Very simple to setup

• Con
– Difficult for complex requirements (e.g. co-

scheduling)
– The Tuple space might become the bottleneck 

eventually!
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Outlook 

• Other use cases for the UNICORE Spaces?

– any „document-oriented state machine“ will be easy

• Implementation aspects

– improve read() / take() performance (partitioning, indexing...)

– investigate distributed/clustered space (hard!)

• Job processing example application: 

– more than a toy

– Security
• need to delegate trust to the workers

– Input/Output data
• stage-in from shared storage? From client?

• getting results: not a problem once TD is in place
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Downloads, documentation, tutorials, mailing lists, community links,

and more: http://www.unicore.eu

Thank  you!

Project website: http://www.chemomentum.org
Funded by the European commission, IST-5-033437

http://www.unicore.eu/

