
Space-based approach to
high throughput computations in

UNICORE 6 Grids

Bernd Schuller, Miriam Schumacher

Jülich Supercomputing Cente
Distributed Systems and Grid Computing

Forschungszentrum Jülich GmbH

2UNICORE Summit, August 26, 2008

Outline

• Motivation: high-throughput computing
• What is a tuple space?
• „XML Spaces“ based on WSRFlite / UNICORE 6
• Job execution using the tuple space
• Performance measurements and results

 3UNICORE Summit, August 26, 2008

High-throughput computing –
characteristics and challenges

• Characteristics
– Many (small) jobs, many (small) resources

• Examples
– Docking (e.g. WISDOM),
– High-throughput screening, e.g. apply a QSAR model

for property prediction for a very high number of
structures

split join

process

 UNICORE Summit, August 26, 2008

Example: find a drug for
combating avian flu

Garcia-Sosa, A.T., Sild, S., Maran, U. ChemMedChem, submitted 2008.

 UNICORE Summit, August 26, 2008

Using docking for virtual screening

• Docking is very well suited for massive
parallelization: 1 job per docking run

• Docking was run through the UNICORE command
client. UNICORE was used for the distribution,
running and output recollection of the jobs

• Single UNICORE site
• ~ 1,500 jobs per day on 20 cluster nodes
• Each job took around 15 mins. average real time
• 50-100,000 ligands per virtual screening
• 33-66 days on 20 nodes (or 7-12 days on 100 nodes)
• Promising strategies and molecules for new inhibitors

of avian flu have been obtained

Garcia-Sosa, A.T., Sild, S., Maran, U. ChemMedChem, submitted 2008.

6UNICORE Summit, August 26, 2008

High throughput computing –
Problems of conventional architectures
• Challenges

– Scalable resource discovery, Efficient resource usage

• the „information gap“: a lot of state information must
be available to the information systems to allow
efficient resource usage

• Scalability: information systems and schedulers
(usually) become bottlenecks as execution nodes
are added

 7UNICORE Summit, August 26, 2008

High-throughput computing –
UNICORE 6 based approaches

• Commandline client (UCC) batch mode

• UNICORE 6 Workflow system

• Tuple Space based approach

• Other(s)

8UNICORE Summit, August 26, 2008

Tuple Space basics

Tuple Space

write()

Client

Query template

XML Document

read()

Client

take()

Client
x

9UNICORE Summit, August 26, 2008

Tuple Spaces principles

• Tuple space stores entries
• Tuple space entries have a lifetime („lease time“)
• Basic API

– write(Entry, LeaseTime)
• inserts new entry into the tuple space

– read(Template, Timeout)
• returns matching entry

– take(Template, Timeout)
• returns matching entry

and removes it from the tuple space

– notify(Template)
• tuple space will notify client upon insertion of matching

entry

10UNICORE Summit, August 26, 2008

Template-based queries

• read(), take() use „query by example“
• Supply a template for querying with fields set
• Example:

– give me an entry where the field „status“ has the
value „DONE“

• Intuitive and easy to use
• Not as powerful as a real query language (such

as SQL, XPath or XQuery)

11UNICORE Summit, August 26, 2008

JavaSpaces

• Java based tuple space (stores Java objects)
• Part of Sun's JINI specification
• Opensource and commercial implementations

exist
– Gigaspaces (commercial)
– Sun JINI
– Blitz

• Stores Java objects
• Communicates using Java RMI (but also SOAP

etc.)

12UNICORE Summit, August 26, 2008

Tuple spaces: pro&con

• Pro
– Decouple communications
– Enables highly scalable („share-nothing“)

architectures

• Con
– Tuple space itself is hard to distribute
– Tuple space itself may become the bottleneck
– Not all applications fit this model

13UNICORE Summit, August 26, 2008

Idea: „XML Space“

• Store any XML documents
• Use UNICORE 6 protocols and tools
• WSRF fits the tuple space model very nicely

– resource + lifetime concepts
– XML centric

• Diploma thesis by Miriam Schumacher
– used UNICORE 6 / WSRFlite to implement such

an „XML space“

– Prototype + example application available
http://unicore.svn.sf.net/svnroot/unicore/contributions/unicore-spaces/trunk

14UNICORE Summit, August 26, 2008

UNICORE Spaces

• Small add-on to UNICORE 6
• Two services

– Space
• web service, offering write(), read(), take()

– SpaceEntry
• WSRF service
• Each instance corresponds to one entry in the

spaceWS-
• XML document is stored as a WSRFresource

property

• Example Client (SpaceClient)
• ca. 300 lines of code

15UNICORE Summit, August 26, 2008

Job execution example

Tuple space

Client Execution
Node

<Job xmlns=...">
 <JobID>my test job</JobID>
 <Status>NEW</Status>
 <JSDL>
 <jsdl:JobDescription>
 <jsdl:Application>...</...>
 </jsdl:JobDescription>
 </JSDL>
</Job>

1
<Job xmlns=...">
 <JobID>my test job</JobID>
 <ServerJobID>...</ServerJobID>
 <ServerID>...</ServerID>
 <Status>SUBMITTED</Status>
 <Address>...</Address>
 <JSDL>...</JSDL>
</Job>

2

<Job xmlns=...">
 <JobID>my test job</JobID>
 <ServerJobID>...</ServerJobID>
 <ServerID>...</ServerID>
 <Address>...</Address>
 <Status>DONE</Status>

 <JSDL>...</JSDL>
</Job>

3

16UNICORE Summit, August 26, 2008

Job execution

1. write()
job.status=NEW

Client

Execution
Node

2. take()
job.status=NEW

3. write()
job.status=
SUBMITTED

Tuple space

5. write()
job.status=
DONE

6. take()
job.status=DONE

4. execute
locally

17UNICORE Summit, August 26, 2008

Components

Tuple space

Job TakerJob Taker

TSS, JMS

XNJS

submit/start job
notify on
status
changes

take() new jobs
write() submitted jobs
write() done jobs

Client
write() new jobs
take() done jobs

Execution
Node

18UNICORE Summit, August 26, 2008

Performance test configuration

Client
node5

Execution
node3

Execution
node2

Execution
node4

Execution
node1

Tuple space
node0

Gateway
Shared registry
XUUDB
node0

UCC
 - batch mode (w/o fetch output)
 - client for space-based batch mode

19UNICORE Summit, August 26, 2008

Some first results: job throughput

for comparison: UCC batch-mode, 100 jobs @ 4 nodes = 126 seconds
(ucc „tuned“ to not check resource availability and to not get any output files)

Nodes Jobs

100 400 1000 5000

1 97
2 48 146 520
4 26 80 231 940
5 22

20UNICORE Summit, August 26, 2008

read() / take() : performance

0 2000 4000 6000 8000 10000
7,5

10

12,5

15

17,5

20

22,5

25

27,5

30

32,5

35

37,5

40

Mean lookup
time [ms]

Number of Entries in the Tuple space

Unit test!

read()/take()
becomes a bottleneck
when many clients
access the same space

Measure mean
time for read() of
100 random entries

21UNICORE Summit, August 26, 2008

Summary:

• Very promising!
• Pro

– Excellent for simple requirements
– Highly scalable
– Very simple to setup

• Con
– Difficult for complex requirements (e.g. co-

scheduling)
– The Tuple space might become the bottleneck

eventually!

22UNICORE Summit, August 26, 2008

Outlook

• Other use cases for the UNICORE Spaces?

– any „document-oriented state machine“ will be easy

• Implementation aspects

– improve read() / take() performance (partitioning, indexing...)

– investigate distributed/clustered space (hard!)

• Job processing example application:

– more than a toy

– Security
• need to delegate trust to the workers

– Input/Output data
• stage-in from shared storage? From client?

• getting results: not a problem once TD is in place

 23UNICORE Summit, August 26, 2008

Downloads, documentation, tutorials, mailing lists, community links,

and more: http://www.unicore.eu

Thank you!

Project website: http://www.chemomentum.org
Funded by the European commission, IST-5-033437

http://www.unicore.eu/

